The high affinity of Ag+ for DNA bases has enabled creation of short oligonucleotide-encapsulated Ag nanoclusters without formation of large nanoparticles. Time-dependent formation of cluster sizes ranging from Ag1 to Ag4/oligonucleotide were observed with strong, characteristic electronic transitions between 400 and 600 nm. The slow nanocluster formation kinetics enables observation of specific aqueous nanocluster absorptions that evolve over a period of 12 h. Induced circular dichroism bands confirm that the nanoclusters are associated with the chiral ss-DNA template. Fluorescence, absorption, mass, and NMR spectra all indicate that multiple species are present, but that their creation is both nucleotide- and time-dependent.
Prepared within biocompatible poly(amidoamine) dendrimer hosts, blue emitting Au8 nanodots were prepared with fluorescence quantum yields more than 100 times larger than any previously prepared. The strong size-dependent blue emission from these from monodisperse Au8 nanodots was measured to be 41% in aqueous solution and 52% in methanol. These easily prepared, water-soluble, and high quantum yield gold nanodots lend insight into the molecular nature of small metal nanoclusters and may find application as novel biocompatible fluorophores.
The reduction of silver cations bound to the oligonucleotide dC 12 was used to form silver nanoclusters. Mass spectra show that the oligonucleotides have 2-7 silver atoms that form multiple species, as evident from the number of transitions in the fluorescence and absorption spectra. The variations in the concentrations of the nanoclusters with time are attributed to the changing reducing capacity of the solution, and the formation of oxidized nanoclusters is proposed. Via mass spectrometry and circular dichroism spectroscopy, double-stranded structures with Ag + -mediated interactions between the bases are observed, but these structures are not maintained with the reduced nanoclusters. Through variations in the pH, the nanoclusters are shown to bind with the N3 of cytosine.
Small silver clusters that form with short oligonucleotides are distinguished by their strong fluorescence. Previous work showed that red and blue/green emitting species form with the cytosine oligonucleotide dC12. To understand how the bases and base sequence influence cluster formation, the blue/green emitting clusters that form with the thymine-containing oligonucleotides dT12, dT4C4T4, and dC4T4C4 are discussed. With dT12 and dT4C4T4, variations in the solution pH establish that the clusters associate with the N3 of thymine. The small clusters are bound to the larger DNA template, as demonstrated by fluorescence anisotropy, circular dichroism, and fluorescence correlation spectroscopy (FCS) studies. For dT4C4T4, FCS studies showed that approximately 50% of the strands are labeled with the fluorescent clusters. Absorption spectra and the gas dependence of the fluorescence show that nonfluorescent clusters also form following the reduction of the silver cation – oligonucleotide conjugates. Fluorescent cluster formation is favored by oxygen, thus indicating that the DNA-bound clusters are partially oxidized. To elaborate the sequence dependence of cluster formation, dC4T4C4 was studied. Cluster formation depends on the oligonucleotide concentration, and higher concentrations favor a red emitting species. A blue/green emissive species dominates at lower concentrations of dC4T4C4, and it has spectroscopic, physical, and chemical properties that are similar to those of the clusters that form with dT12 and dT4C4T4. These results suggest that cytosine- and thymine-containing oligonucleotides stabilize a preferred emissive silver cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.