An improved approach composed of an oxidation reaction in acidic H2O2 solution and a sequential silanization reaction using neat silane reagents for surface modification of poly(dimethylsiloxane) (PDMS) substrates was developed. This solution-phase approach is simple and convenient for some routine analytical applications in chemistry and biology laboratories and is designed for intact PDMS-based microfluidic devices, with no device postassembly required. Using this improved approach, two different functional groups, poly(ethylene glycol) (PEG) and amine (NH2), were introduced onto PDMS surfaces for passivation of nonspecific protein absorption and attachment of biomolecules, respectively. X-ray electron spectroscopy and temporal contact angle experiments were employed to monitor functional group transformation and dynamic characteristics of the PEG-grafted PDMS substrates; fluorescent protein solutions were introduced into the PEG-grafted PDMS microchannels to test their protein repelling characteristics. These analytical data indicate that the PEG-grafted PDMS surfaces exhibit improved short-term surface dynamics and robust long-term stability. The amino-grafted PDMS microchannels are also relatively stable and can be further activated for modifications with peptide, DNA, and protein on the surfaces of microfluidic channels. The resulting biomolecule-grafted PDMS microchannels can be utilized for cell immobilization and incubation, semiquantitative DNA hybridization, and immunoassay.
The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high selectivity for IL-3Rα-positive cells. In contrast, 7G3 ACs with the ability to either escape endosome entrapment or traffic to the nucleus was not superior to 7G3-ChAcNLS for increasing intracellular accumulation. Transportation of (64)Cu when complexed to 7G3-ChAcNLS also resulted in increased nuclear and intracellular radioactivity accumulation. Thus, ChAcNLS is a novel mAb functionalizing technology that demonstrates its ability to increase AC intracellular accumulation in target cells through escaping endosome entrapment coupled to nuclear trafficking.
Purpose: Prostate stem cell antigen (PSCA) is a cell surface glycoprotein that is overexpressed in prostate cancer, including hormone refractory disease. Previous preclinical studies showed the intact anti-PSCA antibodies, 1G8 and hu1G8, localized specifically to PSCA-expressing xenografts. Optimal micro positron emission tomography (microPET) imaging using hu1G8, however, required a delay of 168 hours postinjection. In this study, the 2B3 minibody (an 80-kDa engineered antibody fragment) has been produced for rapid targeting and imaging. Experimental Design: A gene encoding a PSCA-specific minibody,V L -linker-V H -hinge-huIgG1 C H 3, was assembled. The minibody was expressed by secretion from mammalian cells and purified by cation exchange chromatography. Relative affinity and specificity were determined by competition ELISA and flow cytometry. Serial microPET imaging using a 124 I-labeled minibody was conducted at 4 and 21 hours in mice bearing LAPC-9 AD, LAPC-9 AI, PC-3, and LNCaP-PSCA human prostate cancer xenografts. Tumor and tissue biodistribution was determined, and region of interest analysis of the images was conducted. Results: Yields of 20 mg/L purified 2B3 minibody were obtained that showed specific binding to LNCaP-PSCA cells. Purified 2B3 minibody showed specific binding to LNCaP-PSCA cells with an apparent affinity of 46 nmol/L. Radioiodinated 2B3 minibody showed rapid nontarget tissue and blood clearance kinetics (t 1/2 h = 11.2 hours). MicroPET scanning using the 124
The murine 1G8 (micro1G8) monoclonal antibody directed against prostate stem cell antigen (PSCA) prevents prostate tumor establishment, growth, and metastasis in murine models. To further delineate in vivo targeting properties, micro1G8 was radiolabeled with In-111 and evaluated in nude mice bearing PC3-PSCA xenografts. Tumor activity ranged from 11.8% to 17.1% injected dose per gram (ID/g) at 24 to 96 hours postinjection. To extend the clinical applicability of micro1G8, a chimeric 1G8 antibody was produced that exhibited specific binding to PSCA and significant antitumor effect over micro1G8 in established LAPC-9 prostate cancer xenografts (P=0.0014). However, low expression yields and instability prompted us to humanize 1G8 by grafting the complementary determining regions onto the stable, human Fv framework of anti-p185 4D5v8 (trastuzumab). Two humanized 1G8 (hu1G8) versions (A and B) that differed in the number of murine residues present in the C-terminal half of CDR-H2, were produced. Biacore binding studies demonstrated affinities of 1.47 nM for micro1G8 and 3.74 nM for hu2B3-B, representing a 2.5-fold reduction. Tumor targeting of version B radioiodinated with I was evaluated by serial microPET imaging. Specific tumor targeting of I-hu1G8-B to PC3-PSCA [12.7 (+/-1.6)% ID/g at 94 h] and LAPC-9 [6.6 (+/-0.9)% ID/g at 168 h) xenografts was observed. Inhibition of tumor growth by hu1G8-B was demonstrated in mice bearing low-expressing SW-780-PSCA bladder carcinoma xenografts. In this model, the micro1G8 was ineffective, whereas the hu1G8-B exhibited approximately 50% inhibitory effect. These data support further development of hu1G8 anti-PSCA antibody for targeted imaging and therapy for tumors of urogenital origin.
PurposeProstate stem cell antigen (PSCA), a cell surface glycoprotein expressed in normal human prostate and bladder, is over-expressed in the majority of localized prostate cancer and most bone metastases. We have previously shown that the hu1G8 minibody, a humanized anti-PSCA antibody fragment (single-chain Fv-CH3 dimer, 80 kDa), can localize specifically and image PSCA-expressing xenografts at 21 h post-injection. However, the humanization and antibody fragment reformatting decreased its apparent affinity. Here, we sought to evaluate PET imaging contrast with affinity matured minibodies.MethodsYeast scFv display, involving four rounds of selection, was used to generate the three affinity matured antibody fragments (A2, A11, and C5) that were reformatted into minibodies. These three affinity matured anti-PSCA minibodies were characterized in vitro, and following radiolabeling with 124I were evaluated in vivo for microPET imaging of PSCA-expressing tumors.ResultsThe A2, A11, and C5 minibody variants all demonstrated improved affinity compared to the parental (P) minibody and were ranked as follows: A2 > A11 > C5 > P. The 124I-labeled A11 minibody demonstrated higher immunoreactivity than the parental minibody and also achieved the best microPET imaging contrast in two xenograft models, LAPC-9 (prostate cancer) and Capan-1 (pancreatic cancer), when evaluated in vivo.ConclusionOf the affinity variant minibodies tested, the A11 minibody that ranked second in affinity was selected as the best immunoPET tracer to image PSCA-expressing xenografts. This candidate is currently under development for evaluation in a pilot clinical imaging study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.