In
hydrogen production, the anodic oxygen evolution reaction (OER)
limits the energy conversion efficiency and also impacts stability
in proton-exchange membrane water electrolyzers. Widely used Ir-based
catalysts suffer from insufficient activity, while more active Ru-based
catalysts tend to dissolve under OER conditions. This has been associated
with the participation of lattice oxygen (lattice oxygen oxidation
mechanism (LOM)), which may lead to the collapse of the crystal structure
and accelerate the leaching of active Ru species, leading to low operating
stability. Here we develop Sr–Ru–Ir ternary oxide electrocatalysts
that achieve high OER activity and stability in acidic electrolyte.
The catalysts achieve an overpotential of 190 mV at 10 mA cm–2 and the overpotential remains below 225 mV following 1,500 h of
operation. X-ray absorption spectroscopy and 18O isotope-labeled
online mass spectroscopy studies reveal that the participation of
lattice oxygen during OER was suppressed by interactions in the Ru–O–Ir
local structure, offering a picture of how stability was improved.
The electronic structure of active Ru sites was modulated by Sr and
Ir, optimizing the binding energetics of OER oxo-intermediates.
We report formate production via CO2 electroreduction at a Faradaic efficiency (FE) of 93% and a partial current density of 930 mA cm -2 , an activity level of potential industrial interest based on prior techno-economic analyses. We devise a novel catalyst synthesized using InP colloidal quantum dots (CQDs): the capping ligand exchange introduces surface sulfur, and XPS reveals the generation, operando, of an active catalyst exhibiting sulfur-protected oxidized indium and indium metal. Surface indium metal sites adsorb and reduce CO2 molecules, while
The electrochemical conversion of CO2 to methane provides a means to store intermittent renewable electricity in the form of a carbon-neutral hydrocarbon fuel that benefits from an established global distribution network. The stability and selectivity of reported approaches reside below technoeconomic-related requirements. Membrane electrode assembly-based reactors offer a known path to stability; however, highly alkaline conditions on the cathode favour C-C coupling and multi-carbon products. In computational studies herein, we find that copper in a low coordination number favours methane even under highly alkaline conditions. Experimentally, we develop a carbon nanoparticle moderator strategy that confines a copper-complex catalyst when employed in a membrane electrode assembly. In-situ XAS measurements confirm that increased carbon nanoparticle loadings can reduce the metallic copper coordination number. At a copper coordination number of 4.2 we demonstrate a CO2-to-methane selectivity of 62%, a methane partial current density of 136 mA cm−2, and > 110 hours of stable operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.