A subgroup H of a group G is c-subnormal in G if G has a subnormal subgroup T such that
HT=G and T 3 H ⊆ HG.[1] Using this concept, in Jaraden obtain[1] some new conditions for solubility of a
finite group are given. Here we obtain local versions of these results
Let G be a finite group. We say that a subgroup H of G is [Formula: see text]-normal in G if G has a subnormal subgroup T such that TH = G and (H ∩ T)HG/HG is contained in the [Formula: see text]-hypercenter [Formula: see text] of G/HG, where [Formula: see text] is the class of the finite supersoluble groups. We study the structure of G under the assumption that some subgroups of G are [Formula: see text]-normal in G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.