Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2 + TMPRSS2 + cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.
Background
Patients with severe Coronavirus Disease 2019 (COVID-19) have respiratory failure with hypoxemia and acute bilateral pulmonary infiltrates, consistent with acute respiratory distress syndrome (ARDS). It has been suggested that respiratory failure in COVID-19 represents a novel pathologic entity.
Research Question
How does the lung histopathology described in COVID-19 compare to the lung histopathology described in SARS and H1N1 influenza?
Study Design
and Methods: We conducted a systematic review to characterize the lung histopathologic features of COVID-19 and compare them against findings of other recent viral pandemics, H1N1 influenza and SARS. We systematically searched MEDLINE and PubMed for studies published up to June 24, 2020 using search terms for COVID-19, H1N1 influenza and SARS with keywords for pathology, biopsy, and autopsy. Using PRISMA-IPD guidelines, our systematic review analysis included 26 articles representing 171 COVID-19 patients; 20 articles representing 287 H1N1 patients; and eight articles representing 64 SARS patients.
Results
In COVID-19, acute phase diffuse alveolar damage (DAD) was reported in 88% of patients, which was similar to the proportion of cases with DAD in both H1N1 (90%) and SARS (98%). Pulmonary microthrombi were reported in 57% of COVID-19 and 58% of SARS patients, as compared to 24% of H1N1 influenza patients.
Interpretation
DAD, the histologic correlate of ARDS, is the predominant histopathologic pattern identified in lung pathology from patients with COVID-19, H1N1 influenza and SARS. Microthrombi were reported more frequently in both patients with COVID-19 and SARS as compared to H1N1 influenza. Future work is needed to validate this histopathologic finding and, if confirmed, elucidate the mechanistic underpinnings and characterize any associations with clinically important outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.