The present study investigates the antimicrobial and preservative potentials of turmeric extracts for food industry. Turmeric extracts prepared in n-hexane, water, chloroform and ethanol were applied to meals as preservatives and antibacterial agent. The samples were assessed microbiologically (total bacterial, total fungal and total coliform counts) and organoleptically (color, odor, taste) at day zero and after 15 days intervals. Meals autoclaved for shorter time (5 min) and treated with combination of 1 % or 2 % turmeric extract preserved for longer period. These results were comparable with samples autoclaved for longer period (15 min) with out turmeric extract. The antibacterial activities of different turmeric extracts were also tested against Escherichia coli, Staphylococcus aureus, Salmonella typhi and Candida albicans by disc diffusion method. Water extracted samples of turmeric stored at room temperature inhibited the growth of Escherichia coli and Salmonella typhi while aqueous extract autoclaved at 121 °C for 30 min reduced the growth of Escherichia coli and Staphylococcus aureus. Methanol extracted samples stored at room temperature or autoclaved at 121 °C was effective to control the growth of all microbes under study. Chloroform and n-hexane extracts (stored at room temperature) showed weak activity against all tested microbes.
The frost hardiness of many plants such as chickpea can be increased by exposure to low non-freezing temperatures and/or the application of abscisic acid (ABA), a process known as frost acclimation. Experiments were conducted to study the response over a 14 d period of enriched plasma membrane fractions isolated from chickpea plants exposed to low temperature and sprayed with exogenous ABA. Measurement of the temperatures inducing 50% foliar cell death (LT50), and subsequent statistical analysis suggest that, like many plants, exposure to low temperatures (5/-2 degrees C; day/night) induces a significant level (P <0.05) of frost acclimation in chickpea when compared with control plants (20/7 degrees C; day/night). Spraying plants with exogenous ABA also increased frost tolerance (P <0.05), but was not as effective as low temperature-induced frost acclimation. Both pre-exposure to low temperatures and pre-treatment with ABA increased the levels of fatty acid desaturation in the plasma membrane (measured as the double bond index, DBI). Exposure of chickpea plants to low temperatures increased the DBI by 15% at day 4 and 19% at day 14 when compared with untreated control plants. Application of ABA alone did not increase the DBI by more than 6% at any time; the effects of both treatments applied together was more than additive, inducing a DBI increase of 27% at day 14 when compared with controls. There was a good correlation (P <0.05) between the DBI and LT50, suggesting that the presence of more unsaturated lipid in the plasma membrane may prevent cell lysis at low temperatures. Both pre-exposure to low, non-freezing temperatures and pre-treatment with ABA induced measurable changes in membrane fluidity, but these changes did not correlate with changes in LT50, suggesting that physical properties of the plasma membrane other than fluidity are involved in frost acclimation in chickpea.
A hydroponics experiment was conducted to investigate the effect of salinity (NaCl) and cadmium (Cd) stresses on growth, lipid peroxidation, and antioxidant enzyme activities of three wheat cultivars differing in salt tolerance. Cd and NaCl stresses inhibited plant growth, reduced chlorophyll content, and increased melondialdehyde content and the activities of superoxide dismutase, catalase and peroxidase. The combined effect of NaCl and Cd on these parameters was larger than both NaCl and Cd alone. There was an obvious difference in the response to the both stresses among the three genotypes, with Pir Sabak-85 being less affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.