Appropriate gate dielectrics must be identified to fabricate metal–insulator–semiconductor field-effect transistors (MISFETs); however, this has been challenging for compound semiconductors owing to the absence of high-quality native oxides. This study uses the liquid-gallium squeezing technique to fabricate 2D amorphous gallium oxide (GaOX) with a high dielectric constant, where its thickness is precisely controlled at the atomic scale (monolayer, ∼4.5 nm; bilayer, ∼8.5 nm). Beta-phase gallium oxide (β-Ga2O3) with an ultrawide energy bandgap (4.5–4.9 eV) has emerged as a next-generation power semiconductor material and is presented here as the channel material. The 2D amorphous GaOX dielectric is combined with a β-Ga2O3 conducting nanolayer, and the resulting β-Ga2O3 MISFET is stable up to 250 °C. The 2D amorphous GaOX is oxygen-deficient, and a high-quality interface with excellent uniformity and scalability forms between the 2D amorphous GaOX and β-Ga2O3. The fabricated MISFET exhibits a wide gate-voltage swing of approximately +5 V, a high current on/off ratio, moderate field-effect carrier mobility, and a decent three-terminal breakdown voltage (∼138 V). The carrier transport of the Ni/GaOX/β-Ga2O3 metal–insulator–semiconductor (MIS) structure displays a combination of Schottky emission and Fowler–Nordheim (F–N) tunneling in the high-gate-bias region at 25 °C, whereas at elevated temperatures it shows Schottky emission and F–N tunneling in the low- and high-gate-bias regions, respectively. This study demonstrates that a 2D GaOX gate dielectric layer can be produced and incorporated into an active channel layer to form an MIS structure at room temperature (∼25 °C), which enables the facile fabrication of MISFET devices.
We report on the anisotropic structural properties of periodically polarity-inverted ͑PPI͒ ZnO structures grown on patterned templates. The etching and growth rates along ͗1120͘ direction of ZnO structures are higher than those of ͗1010͘ direction of ZnO films. From the strain evaluation by Raman spectroscopy, compressive strains are observed in all PPI ZnO samples with different stripe pattern size and the smaller pattern size is more effective to residual stress relaxation. The detailed structures at transition region show relationship with the anisotropic crystal quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.