This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for learning feature representations using singular values. In "A Secure and Practical Mechanism for Outsourcing ELMs in Cloud Computing," Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, and Victor C.M. Leung propose a method for handling large data applications by outsourcing to the cloud that would dramatically reduce ELM training time. In "ELM-Guided Memetic Computation for Vehicle Routing," Liang Feng, Yew-Soon Ong, and Meng-Hiot Lim consider the ELM as an engine for automating the encapsulation of knowledge memes from past problem-solving experiences. In "ELMVIS: A Nonlinear Visualization Technique Using Random Permutations and ELMs," Anton Akusok, Amaury Lendasse, Rui Nian, and Yoan Miche propose an ELM method for data visualization based on random permutations to map original data and their corresponding visualization points. In "Combining ELMs with Random Projections," Paolo Gastaldo, Rodolfo Zunino, Erik Cambria, and Sergio Decherchi analyze the relationships between ELM feature-mapping schemas and the paradigm of random projections. In "Reduced ELMs for Causal Relation Extraction from Unstructured Text," Xuefeng Yang and Kezhi Mao propose combining ELMs with neuron selection to optimize the neural network architecture and improve the ELM ensemble's computational efficiency. In "A System for Signature Verification Based on Horizontal and Vertical Components in Hand Gestures," Beom-Seok Oh, Jehyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, and Jaihie Kim propose a novel paradigm for hand signature biometry- for touchless applications without the need for handheld devices. Finally, in "An Adaptive and Iterative Online Sequential ELM-Based Multi-Degree-of-Freedom Gesture Recognition System," Hanchao Yu, Yiqiang Chen, Junfa Liu, and Guang-Bin Huang propose an online sequential ELM-based efficient gesture recognition algorithm for touchless human-machine interaction
In this paper, we propose a user authentication system based on hand-gesture signature without the need of any handheld device. The system uses a depth image sensor to locate the fingertip and palm mass-center from detected hand region for trajectory processing. Apart from the positional information, the velocity and acceleration information are included as input features for trajectory matching. The system verification performance is evaluated in terms of equal error rate. In addition, an investigation of fusion at feature level is conducted for possible performance enhancement. Our empirical results show the potential of the proposed bare-hand in-air signature system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.