Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.
Background Cholecystitis is an important risk factor for gallbladder cancer, but the bile microbiome and its association with gallbladder disease has not been investigated fully. We aimed to analyze the bile microbiome in normal conditions, chronic cholecystitis, and gallbladder cancer, and to identify candidate bacteria that play an important role in gallbladder carcinogenesis. Methods We performed metagenome sequencing on bile samples of 10 healthy individuals, 10 patients with chronic cholecystitis, and 5 patients with gallbladder cancer, and compared the clinical, radiological, and pathological characteristics of the participants. Results No significant bacterial signal was identified in the normal bile. The predominant dysbiotic bacteria in both chronic cholecystitis and gallbladder cancer were those belonging to the Enterobacteriaceae family. Klebsiella increased significantly in the order of normal, chronic cholecystitis, and gallbladder cancer. Patients with chronic cholecystitis and dysbiotic microbiome patterns had larger gallstones and showed marked epithelial atypia, which are considered as precancerous conditions. Conclusion We investigated the bile microbiome in normal, chronic cholecystitis, and gallbladder cancer. We suggest possible roles of Enterobacteriaceae, including Klebsiella , in gallbladder carcinogenesis. Our findings reveal a possible link between a dysbiotic bile microbiome and the development of chronic calculous cholecystitis and gallbladder cancer.
Halogenases are playing an important role as tailoring enzymes in biosynthetic pathways. Flavin-dependent tryptophan halogenases (Trp-FDHs) are among the enzymes that have broad substrate scope and high selectivity.
Bacterial sphingomyelinases (SMases) hydrolyze sphingomyelin and play an important role in membrane dynamics and the host immune system. While the number of sequenced genomes and metagenomes is increasing, a limited number of experimentally validated SMases have been reported, and the genomic diversity of SMases needs to be elucidated extensively. This study investigated the sequence and structural characteristics of SMases in bacterial genomes and metagenomes. Using previously identified SMases, such as the β-toxin of Staphylococcus aureus, we identified 276 putative SMases and 15 metagenomic SMases by a sequence homology search. Among the predicted metagenomic SMases, six non-redundant metagenomic SMases (M-SMase1−6) were selected for further analysis. The predicted SMases were confirmed to contain highly conserved residues in the central metal-binding site; however, the edge metal-binding site showed high diversity according to the taxon. In addition, protein structure modeling of metagenomic SMases confirmed structural conservation of the central metal-binding site and variance of the edge metal-binding site. From the activity assay on M-SMase2 and M-SMase5, we found that they displayed sphingomyelinase activity compared to Bacillus cereus SMase. This study elucidates a comprehensive genomic characterization of SMases and provides insight into the sequence-structure-activity relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.