Ischaemic heart disease (IHD) is the leading cause of death worldwide. Although myocardial cell death plays a significant role in myocardial infarction (MI), its underlying mechanism remains to be elucidated. To understand the progression of MI and identify potential therapeutic targets, we performed tandem mass tag (TMT)-based quantitative proteomic analysis using an MI mouse model. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) revealed that the glutathione metabolic pathway and reactive oxygen species (ROS) pathway were significantly downregulated during MI. In particular, glutathione peroxidase 4 (GPX4), which protects cells from ferroptosis (an iron-dependent programme of regulated necrosis), was downregulated in the early and middle stages of MI. RNA-seq and qRT-PCR analyses suggested that GPX4 downregulation occurred at the transcriptional level. Depletion or inhibition of GPX4 using specific siRNA or the chemical inhibitor RSL3, respectively, resulted in the accumulation of lipid peroxide, leading to cell death by ferroptosis in H9c2 cardiomyoblasts. Although neonatal rat ventricular myocytes (NRVMs) were less sensitive to GPX4 inhibition than H9c2 cells, NRVMs rapidly underwent ferroptosis in response to GPX4 inhibition under cysteine deprivation. Our study suggests that downregulation of GPX4 during MI contributes to ferroptotic cell death in cardiomyocytes upon metabolic stress such as cysteine deprivation.
This study identified microRNAs involved in myocardial infarction (MI) through a novel system-level approach using RNA sequencing data in an MI mouse model. This approach involved the extraction of DEGs and DEmiRs from RNA-seq data in sham and MI samples and the subsequent selection of two miRNAs: miR-30-5p (family) and miR-142a-5p, which were downregulated and upregulated in MI, respectively. Gene Set Enrichment Analysis (GSEA) using the predicted targets of the two miRNAs suggested that apoptosis is an essential gene ontology (GO)-associated term. In vitro functional assays using neonatal rat ventricular myocytes (NRVMs) demonstrated that miR-30-5p is anti-apoptotic and miR-142a-5p is pro-apoptotic. Luciferase assays showed that the apoptotic genes, Picalm and Skil, and the anti-apoptotic genes, Ghr and Kitl, are direct targets of miR-30-5p and miR-142a-5p, respectively. siRNA studies verified the results of the luciferase assays for target validation. The results of the system-level high throughput approach identified a pair of functionally antagonistic miRNAs and their targets in MI. This study provides an in-depth analysis of the role of miRNAs in the pathogenesis of MI which could lead to the development of therapeutic tools. The system-level approach could be used to identify miRNAs involved in variety of other diseases.
Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neonatal rat ventricular myocytes (NRVMs). Our results showed that overexpression of miR-374 activated G protein-coupled receptor-mediated pro-hypertrophic pathways by the inhibition of VEGFR1-dependent regression pathways. Luciferase assays revealed that miR-374 could directly target the 3′-untranslated regions of VEGFR1 and cGMP-dependent protein kinase-1. Collectively, these findings demonstrated that miR-374 was a novel pro-hypertrophic microRNA functioning to suppress the VEGFR1-mediated regression pathway.
Previously, a surgical regression model identified microRNA-101b (miR-101b) as a potential inhibitor of cardiac hypertrophy. Here, we investigated the antihypertrophic mechanism of miR-101b using neonatal rat ventricular myocytes. miR-101b markedly suppressed agonist-induced cardiac hypertrophy as shown by cell size and fetal gene expression. By systems biology approaches, we identified protein kinase C epsilon (PKCε) as the major target of miR-101b. Our results from qRT-PCR, western blot, and luciferase reporter assays confirm that PKCε is a direct target of miR-101b. In addition, we found that effectors downstream of PKCε (p-AKT, p-ERK1/2, p-NFAT, and p-GSK3β) are also affected by miR-101b. Our study reveals a novel inhibitory mechanism for miR-101b as a negative regulator of cardiac hypertrophy.
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS) during acute myocardial infarction (AMI), is one of the main factors leading to myocardial cell damage and programmed cell death. Phosphatidylinositol-3-kinase-AKT (PI3K-AKT) signaling is essential for regulating cell proliferation, differentiation, and apoptosis. Phosphoinositide-3-kinase (PI3K)-interacting protein 1 (PIK3IP1) is an intrinsic inhibitor of PI3K in various tissues, but its functional role during AMI remains unknown. In this study, the anti-ischemic role of PIK3IP1 in an in vitro AMI setting was evaluated using H9c2 cells. The MTT assay demonstrated that cell viability decreased significantly via treatment with H2O2 (200–500 μM). The TUNEL assay results revealed substantial cellular apoptosis following treatment with 200 μM H2O2. Under the same conditions, the expression levels of hypoxia-inducible factor (HIF-1α), endothelin-1 (ET-1), bcl-2-like protein 4 (BAX), and cleaved caspase-3 were elevated, whereas those of PIK3IP1, LC3II, p53, and Bcl-2 decreased significantly. PIK3IP1 overexpression inhibited H2O2-induced and PI3K-mediated apoptosis; however, PIK3IP1 knockdown reversed this effect, suggesting that PIK3IP1 functions as an anti-apoptotic molecule. To identify both the upstream and downstream molecules associated with PIK3IP1, ET-1 receptor type-specific antagonists (BQ-123 and BQ-788) and PI3K subtype-specific antagonists (LY294002 and IPI-549) were used to determine the participating isoforms. Co-immunoprecipitation was performed to identify the binding partners of PIK3IP1. Our results demonstrated that ROS-induced cardiac cell death may occur through the ETA-PI3Kγ-AKT axis, and that PIK3IP1 inhibits binding with both ETA and PI3Kγ. Taken together, these findings reveal that PIK3IP1 plays an anti-ischemic role by reducing the likelihood of programmed cell death via interaction with the ETA-PI3Kr-AKT axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.