Improving the operational efficiency and optimizing the design of sound navigation and ranging (sonar) systems require accurate electrical equivalent models within the operating frequency range. The power conversion system within the sonar system increases power efficiency through impedance-matching circuits. Impedance matching is used to enhance the power transmission efficiency of the sonar system. Therefore, to increase the efficiency of the sonar system, an electrical-matching circuit is employed, and this necessitates an accurate equivalent circuit for the sonar transducer within the operating frequency range. In conventional equivalent circuit derivation methods, errors occur because they utilize the same number of RLC branches as the resonant frequency of the sonar transducer, based on its physical properties. Hence, this paper proposes an algorithm for deriving an equivalent circuit independent of resonance by employing multiple electrical components and particle swarm optimization (PSO). A comparative verification was also performed between the proposed and existing approaches using the Butterworth–van Dyke (BVD) model, which is a method for deriving electrical equivalent circuits.
The carbon nanotube (CNT) field emitter is suitable for the high frequency pulsing of X-ray. Pulsing reduces 49% of the dose in grid-controlled fluoroscopy and improves the image of moving objects. Various structures and manufacturing processes are being studied. However, more studies on the dynamic characteristic of a pulsing CNT and its application are needed. In this study, the combined dynamics including the field emission, MOSFET, and modified gate driver for MOSFET have been analyzed. In this configuration, between the cathode of the tube and ground, there is a MOSFET switch that turns the tube current on/off and a shunt resistor that measures the tube current. Due to the high impedance of the vacuum between the gate and cathode of the tube, about 85% of the gate voltage is still exerted between the Gate and cathode of the tube during the off-state of the MOSFET. Therefore, space charges are built during the off-state and then released at the beginning of the on-state of the MOSFET. The modified gate driver structure for MOSFET that we propose in this paper can limit the amount of current flow through the cathode. Tube current (boosted current) can be accurately controlled through a modified gate driver structure. Combining the boosted current and pulse control of MOSFET, the dynamic current performance of a CNT tube can be enhanced and the average tube current or dose can be accurately controlled. Experiments, simulation, and analysis have been conducted to study the combined dynamics and its applications.
The recent increase in ailments has increased the demand for diagnosis and surgery based on X-rays. An X-ray system using a filament-type tube heats the filament for operation, and the electrons emitted by the thermal energy during this process produce X-rays. Conventionally, current control-based methods are used to regulate heating. However, these methods do not control the temperature of the filament, resulting in lower or higher output than the desired dose rate. Therefore, we propose a filament temperature control method that enables constant temperature control, which cannot be achieved using the existing heating method for X-ray systems with filament tubes. Additionally, we developed an indirect temperature estimation algorithm for the tungsten filament to incorporate the proposed method. To validate the tube current control through temperature control, we performed experiments to compare the existing current-controlled heating and temperature control methods in terms of the filament temperature. As the tube current is proportional to the dose rate, it was measured through a comparative analysis of the change in the output of dose rate over time. The obtained results validate that the proposed method can maintain both the filament temperature and tube current at the desired level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.