Human carbonic anhydrase IX (CA IX) is overexpressed in a number of solid tumors and is considered to be a marker for cellular hypoxia that it is not produced in most normal tissues. CA IX contributes to the acidification of the extracellular matrix, which, in turn, favors tumor growth and metastasis. Therefore, CA IX is considered to be a promising anti-cancer drug target. However, the ability to specifically target CA IX is challenging due to the fact that the human genome encodes 15 different carbonic anhydrase isoforms that have a high degree of homology. Furthermore, structure-based drug design of CA IX inhibitors so far has been largely unsuccessful due to technical difficulties regarding the expression and crystallization of the enzyme. Currently, only one baculovirus-produced CA IX structure in complex with a nonspecific CA inhibitor, acetazolamide, is available in Protein Data Bank. We have developed an efficient system for the production of the catalytic domain of CA IX in methylotrophic yeast Pichia pastoris. The produced protein can be easily crystallized in the presence of inhibitors, as we have demonstrated for several 2-thiophene-sulfonamide compounds. We have also observed significant differences in the binding mode of chemically identical compounds to CA IX and CA II, which can be further exploited in the design of CA IX-specific inhibitors.
1-N-Alkylated-6-sulfamoyl saccharin derivatives were prepared and assayed as carbonic anhydrase inhibitors (CAIs). During X-ray crystallographic experiments an unexpected hydrolysis of the isothiazole ring was evidenced which allowed us to prepare highly potent enzyme inhibitors with selectivity for some isoforms with medical applications.
6-Sulfamoyl-saccharin was investigated as an inhibitor of 11 α-carbonic anhydrase (CA, EC 4.2.1.1) isoforms of human (h) origin, hCA I-XIV, and X-ray crystallographic data were obtained for its adduct with hCA II, the physiologically dominant isoform. This compound possesses two potential zinc-binding groups, the primary sulfamoyl one and the secondary, acylatedsulfonamide. Saccharin itself binds to the Zn(II) ion from the CA active site coordinating with this last group, in deprotonated (SO2N(-)CO) form. Here we explain why 6-sulfamoyl-saccharin, unlike saccharin, binds to the metal ion from the hCA II active site by its primary sulfonamide moiety and not the secondary one as saccharin itself. Our study is useful for shedding new light to the structure-based drug design of isoform-selective CA inhibitors of the sulfonamide type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.