BackgroundTranscriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Methodology/Principal FindingsUsing in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3′ ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Conclusions/SignificanceOur results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.
The creatine kinase system facilitates energy transfer between mitochondria and the major ATPases in the heart. Creatine-deficient mice, which lack arginine:glycine amidinotransferase (AGAT) to synthesize creatine and homoarginine, exhibit reduced cardiac contractility. We studied how the absence of a functional CK system influences calcium handling in isolated cardiomyocytes from AGAT knockouts and wild-type littermates as well as in AGAT knockout mice receiving lifelong creatine supplementation via the food. Using a combination of whole-cell patch clamp and fluorescence microscopy, we demonstrate that the L-type calcium channel (LTCC) current amplitude and voltage range of activation was significantly lower in AGAT knockout compared to wild-type littermates. Additionally, the inactivation of LTCC and the calcium transient decay were significantly slower. According to our modeling results, these changes can be reproduced by reducing three parameters in knockout mice when compared to wild-type: LTCC conductance, the exchange constant of calcium transfer between subspace and cytosol, and SERCA activity. Since tissue expression of LTCC and SERCA protein were not significantly different between genotypes, this suggests the involvement of post-translational regulatory mechanisms or structural reorganization. The AGAT knockout phenotype of calcium handling was fully reversed by dietary creatine supplementation throughout life. Our results indicate reduced calcium cycling in cardiomyocytes from AGAT knockouts and suggest that the creatine kinase system is important for the development of calcium handling in the heart.
Disruption of the creatine kinase (CK) system in hearts of CK-deficient mice leads to changes in the ultrastructure and regulation of mitochondrial respiration. We expected to see similar changes in creatine-deficient mice, which lack the enzyme guanidinoacetate methyltransferase (GAMT) to produce creatine. The aim of this study was to characterize the changes in cardiomyocyte mitochondrial organization, regulation of respiration, and intracellular compartmentation associated with GAMT deficiency. Three-dimensional mitochondrial organization was assessed by confocal microscopy. On populations of permeabilized cardiomyocytes, we recorded ADP and ATP kinetics of respiration, competition between mitochondria and pyruvate kinase for ADP produced by ATPases, ADP kinetics of endogenous pyruvate kinase, and ATP kinetics of ATPases. These data were analyzed by mathematical models to estimate intracellular compartmentation. Quantitative analysis of morphological and kinetic data as well as derived model fits showed no difference between GAMT-deficient and wild-type mice. We conclude that inactivation of the CK system by GAMT deficiency does not alter mitochondrial organization and intracellular compartmentation in relaxed cardiomyocytes. Thus, our results suggest that the healthy heart is able to preserve cardiac function at a basal level in the absence of CK-facilitated energy transfer without compromising intracellular organization and the regulation of mitochondrial energy homeostasis. This raises questions on the importance of the CK system as a spatial energy buffer in unstressed cardiomyocytes.
Changes in the glycosylation in cancer may lead to an aberrant expression of A, B incompatible or xenogeneic blood group related antigens. To characterize the specificity of IgG antibodies to A, B, and related glycans in sera of gastrointestinal cancer patients, serum probes and affinity-isolated antibodies were analyzed in the indirect and competitive ELISA using a set of homogenous polyacrylamide (PAA) glycoconjugates. Monoreactive antibodies recognizing A(di) (I) and cross-reactive antibodies to A(di)/B(di)/B(tri) (II) or A(di)/A(tri)/Fs(di)/Core5 (III) were affinity-isolated on A(di)-PAA-Sepharose. The population I showed a higher affinity to A(di)-PAA than cross-reactive antibodies. The antibodies II were more specific to B(di) and may belong to the core alpha-Gal reactive antibodies but are also capable of recognizing A(di). The antibodies III were more specific to A(tri); they agglutinated A-erythrocytes and belong to anti-A isoantibodies reactive to xenogeneic oligosaccharides. The purified antibody samples were non- or faintly reactive to Tn. The IC(50) values of PAA glycoconjugates ranged from 6 × 10(-8) to 7 × 10(-6) M. No or weak binding of antibodies to the unrelated antigens used in the detection of polyreactivity (ferritin, casein, and DNA) was observed.
Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking L-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate methyltranferase (GAMT). Our aim was to determine the expression, activity and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK and HK. Lastly, we assessed the expression of the major HK, AK and CK isoforms. Overall, respiration stimulated by HK, AK and CK was ~25, 90 and 80%, respectively, of the maximal respiration rate, and ~20, 0 and 25%, respectively, was channeled to the mitochondria. The activity, distribution and expression of HK, AK and CK did not change in GAMT KO mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine-deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.