Nonuniform helical antennas have many degrees of freedom, which makes the search space for the optimal design very challenging. The objective of this paper is to systematically analyze nonuniform helical antennas with linearly varying geometrical parameters and to provide analytical equations that approximate the optimal design and the gain of the designed antennas. Using various optimization algorithms, we made a large database of the optimal nonuniform helical antennas with linearly varying geometrical parameters. Based on these results, we made analytical equations that approximate the optimal design and the gain of the designed antennas. These equations allow for a fast design procedure yielding all necessary parameters needed for the design and fabrication of nonuniform helical antennas that meet specified characteristics. Special attention is devoted to antenna losses. Antennas designed following the presented procedure achieve around 2.5 dB higher gain than uniform helical antennas of the same axial length, while maintaining the bandwidth and axial ratio. As a verification of the proposed design procedure, a helical antenna with the central operating frequency of 1 GHz was designed, simulated, fabricated, and measured. The comparison between measured and simulated results confirms the validity of the presented design procedure.INDEX TERMS Nonuniform helical antennas, optimization.
We present a design of a high-gain quad array of nonuniform helical antennas. The design is obtained by optimization of a 3-D numerical model of four nonuniform helical antennas placed above a ground plane, including a model of a feeding network, utilizing the method of moments with higher-order basis functions. The gain of one optimal nonuniform helical antenna can be about 2.5 dB higher than the gain of a uniform helical antenna of the same axial length. Creating a 2×2 array further increases the gain up to about 6 dB. The resulting quad array fits into a box whose dimensions are 2.5×3.3×3.3 wavelengths, and the gain in the main radiating direction is about 20.5 dBi in the frequency range from 0.9 GHz to 1.1 GHz. The design is verified by measurements of a prototype of the quad array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.