Original scientific paper A new class of adaptive robust predictors has been considered in the paper. First an optimal predictor is developed, based on the minimization of a generalized mean square prediction error criterion. Starting from the obtained result, an adaptive robust predictor is synthesized through minimization of a modified criterion in which a suitably chosen non-linear function of the prediction error is introduced instead of the quadratic one. Unknown parameters of the predictor are estimated at each step by applying a recursive algorithm of stochastic gradient type. The convergence of the proposed adaptive robustified prediction algorithm is established theoretically using the Martingale theory. It has been shown that the proposed adaptive robust prediction algorithm converges to the optimal systems output prediction. The feasibility of the proposed approach is demonstrated by solving a practical problem of designing a robust version of adaptive minimum variance controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.