Machine learning (ML) has become an attractive tool for solving various problems in different fields of physics, including the quantum domain. Here, we show how classical reinforcement learning (RL) could be used as a tool for quantum state engineering (QSE). We employ a measurement based control for QSE where the action sequences are determined by the choice of the measurement basis and the reward through the fidelity of obtaining the target state. Our analysis clearly displays a learning feature in QSE, for example in preparing arbitrary two-qubit entangled states and delivers successful action sequences that generalise previously found human solutions from exact quantum dynamics. We provide a systematic algorithmic approach for using RL for quantum protocols that deal with a non-trivial continuous state space, and discuss the scaling of these approaches for the preparation of larger entangled (cluster) states.
Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In this type of quantum computing the goal is to output a multivariate function. The success of such a computation can be related to the violation of a generalised Bell inequality. So far, the investigation of binary NMQC with qubits has shown that quantum correlations can compute all Boolean functions using at most $2^n-1$ qubits, whereas local hidden variables (LHVs) are restricted to linear functions. Here, we extend these results to NMQC with qutrits and prove that quantum correlations enable the computation of all three-valued logic functions using the generalised qutrit Greenberger-Horne-Zeilinger (GHZ) state as a resource and at most $3^n-1$ qutrits. This yields a corresponding generalised GHZ type paradox for any three-valued logic function that LHVs cannot compute. We give an example for an $n$-variate function that can be computed with only $n+1$ qutrits, which leads to convenient generalised qutrit Bell inequalities whose quantum bound is maximal. Finally, we prove that not all functions can be computed efficiently with qutrit NMQC by presenting a counterexample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.