Previous studies suggest that brain-derived neurotrophic factor and its receptor TrkB are critically involved in the therapeutic actions of antidepressant drugs. We have previously shown that the antidepressants imipramine and fluoxetine produce a rapid autophosphorylation of TrkB in the rodent brain. In the present study, we have further examined the biochemical and functional characteristics of antidepressant-induced TrkB activation in vivo. We show that all the antidepressants examined, including inhibitors of monoamine transporters and metabolism, activate TrkB rapidly in the rodent anterior cingulate cortex and hippocampus. Furthermore, the results indicate that acute and long-term antidepressant treatments induce TrkB-mediated activation of phospholipase-Cg1 (PLCg1) and increase the phosphorylation of cAMP-related element binding protein, a major transcription factor mediating neuronal plasticity. In contrast, we have not observed any modulation of the phosphorylation of TrkB Shc binding site, phosphorylation of mitogen-activated protein kinase or AKT by antidepressants. We also show that in the forced swim test, the behavioral effects of specific serotonergic antidepressant citalopram, but not those of the specific noradrenergic antidepressant reboxetine, are crucially dependent on TrkB signaling. Finally, brain monoamines seem to be critical mediators of antidepressant-induced TrkB activation, as antidepressants reboxetine and citalopram do not produce TrkB activation in the brains of serotonin-or norepinephrine-depleted mice. In conclusion, our data suggest that rapid activation of the TrkB neurotrophin receptor and PLCg1 signaling is a common mechanism for all antidepressant drugs.
Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson’s disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson’s disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3’UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson’s disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3’UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3’UTR targeting may constitute a useful tool in analyzing gene function.
Ret is the common signaling receptor for glial cell line-derived neurotrophic factor (GDNF) and other ligands of the GDNF family that have potent effects on brain dopaminergic neurons. The Met918Thr mutation leads to constitutive activity of Ret receptor tyrosine kinase, causing the cancer syndrome called multiple endocrine neoplasia type B (MEN2B). We used knock-in MEN2B mice with the Ret-MEN2B mutation to study the effects of constitutive Ret activity on the brain dopaminergic system and found robustly increased concentrations of dopamine (DA) and its metabolites in the striatum, cortex, and hypothalamus. The concentrations of brain serotonin were not affected and those of noradrenaline were slightly increased only in the lower brainstem. Tyrosine hydroxylase (TH) protein levels were increased in the striatum and substantia nigra/ventral tegmental area (SN/VTA), and TH mRNA levels were increased in SN/VTA of MEN2B mice, suggesting that constitutive Ret activity increases DA levels by increasing its synthesis. Also, the striatal DA transporter protein levels in the MEN2B mice were increased, which agrees with increased sensitivity of these mice to the stimulatory effects of cocaine. In the SN pars compacta of homozygous MEN2B mice, we found a 26% increase in the number of TH-positive cells, but no differences were found in the VTA. Thus, we show here that the constitutive Ret activity in mice is sufficient to increase the number of dopaminergic neurons and leads to profound elevation of brain DA concentration. These data clearly suggest that Ret activity per se can have a direct biological function that actively changes and shapes the brain dopaminergic system.
Abstract:The a 2 -adrenoceptors (ARs) are important modulators of a wide array of physiological responses. As only a few selective compounds for the three a 2 -AR subtypes (a 2A , a 2B and a 2C ) have been available, the pharmacological profile of a new a 2C -selective AR antagonist ORM-10921 is reported. Standard in vitro receptor assays and antagonism of a 2 , and a 1 -AR agonist -evoked responses in vivo were used to demonstrate the a 2C -AR selectivity for ORM-10921 which was tested in established behavioural models related to schizophrenia and cognitive dysfunction with an emphasis on pharmacologically induced hypoglutamatergic state by phencyclidine or MK-801. The Kb values of in vitro a 2C -AR antagonism for ORM-10921 varied between 0.078-1.2 nM depending on the applied method. The selectivity ratios compared to a 2A -AR subtype and other relevant receptors were 10-100 times in vitro. The in vivo experiments supported its potent a 2C -antagonism combined with only a weak a 2A -antagonism. In the pharmacodynamic microdialysis study, ORM-10921 was found to increase extracellular dopamine levels in prefrontal cortex in the baseline conditions. In the behavioural tests, ORM-10921 displayed potent antidepressant and antipsychotic-like effects in the forced swimming test and prepulse-inhibition models analogously with the previously reported results with structurally different a 2C -selective AR antagonist JP-1302. Our new results also indicate that ORM-10921 alleviated the NMDA-antagonist-induced impairments in social behaviour and watermaze navigation. This study extends and further validates the concept that a 2C -AR is a potential therapeutic target in CNS disorders such as schizophrenia or Alzheimer's disease and suggests the potential of a 2C -antagonism to treat such disorders. a 2 -Adrenoceptors (a 2 -ARs) consist of three distinct a 2 -adrenergic receptor subtypes in mammals: a 2A , a 2B and a 2C . They are distributed widely, yet not homogenously, regulating a diverse range of physiological processes including sedation/ vigilance, anxiety, pain/analgesia and cardiovascular function [1][2][3]. In the CNS, the a 2C -ARs are expressed most extensively in the striatum and hippocampus [4][5][6][7]. Valuable information on the discrete functions of each a 2 -AR subtype has been gained by using gene-targeted mice [8,9], but the limited availability of suitable subtype selective ligands has hindered their pharmacological exploration [10].The discovery and pre-clinical profile of a chemically novel and exceptionally selective antagonist at the a 2C -AR, JP-1302, has been described [11]. Compared to other available a 2 -ARs, this agent displays striking (>100 times) selectivity. In the behavioural profiling, JP-1302 showed potent antidepressantand antipsychotic-like properties in the forced swimming test and prepulse inhibition (PPI) paradigms [9,12]. Although part of these results are consistent with those obtained with a 2 -AR knockout mice [9], the antipsychotic-like effect, that is, the reversal of impairme...
Glial cell line-derived neurotrophic factor (GDNF) regulates striatal dopaminergic neurons. To study whether reduced endogenous GDNF affect morphine's effects on striatal dopamine transmission, we estimated extracellular concentrations of dopamine and its metabolites by microdialysis in vivo and tissue concentrations post mortem in mice lacking one GDNF allele (GDNF+/- mice). In the wild-type mice, acute morphine (5 and 10 mg/kg s.c.) increased accumbal dopamine output dose-dependently (maximally by 30 and 80%, respectively). In the GDNF+/- mice, 5 mg/kg of morphine enhanced the accumbal dopamine output maximally by 110%, and significantly more than morphine 10 mg/kg (maximally by 60%). Also, the response of extracellular accumbal DOPAC to acute morphine was significantly altered in the GDNF+/- mice. In mice of both genotypes, the responses to morphine in the caudate putamen were similar to but much less intense than those in the nucleus accumbens. Morphine at the doses 5, 10, and 30 mg/kg dose-dependently elevated the striatal tissue concentrations of DOPAC and HVA, but the effect of 30 mg/kg was significantly smaller in the GDNF+/- mice than in their wild-type littermates. The binding of [(3)H]DAMGO to striatal membrane homogenates was similar between the genotypes. However, morphine induced antinociception in the GDNF+/- mice at a smaller dose than in the controls. The finding that reduced GDNF level alters the effects of morphine on striatal dopamine and our previous findings of elevated extracellular striatal dopamine concentrations and FosB/DeltaFosB expression in the GDNF+/- mice show the importance of GDNF in the regulation of striatal dopaminergic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.