Here, we developed an ex vivo method to investigate how the proliferation of NSPCs changes over time after experimental stroke or excitotoxic striatal lesion in the adult rat brain by studying the effects of microglial cells derived from an injured brain on NSPCs. We isolated NSPCs from the SVZ of brains with lesions and analyzed their growth and differentiation when cultured as neurospheres. We found that NSPCs isolated from the brains 1-2 weeks following injury consistently generated more and larger neurospheres than those harvested from naïve brains. We attributed these effects to the presence of microglial cells in NSPC cultures that originated from injured brains. We suggest that the effects are due to released factors because we observed increased proliferation of NSPCs isolated from non-injured brains when they were exposed to conditioned medium from cultures containing microglial cells derived from injured brains. Furthermore, we found that NSPCs derived from injured brains were more likely to differentiate into neurons and oligodendrocytes than astrocytes. Our ex vivo system reliably mimics what is observed in vivo following brain injury. It constitutes a powerful tool that could be used to identify factors that promote NSPC proliferation and differentiation in response to injury-induced activation of microglial cells, by using tools such as proteomics and gene array technology.4
Background and Purpose-Cells proliferate continuously in the adult mammalian brain, and in rodents, cell genesis is affected by housing conditions and brain injury. Increase in neurogenesis after brain ischemia has been postulated to be linked to functional recovery after stroke. Housing rodents in an enriched environment improves motor function after stroke injury. We have investigated whether changes in cell genesis can explain the beneficial effects of an enriched environment. Methods-Intact mice and mice subjected to transient occlusion of the middle cerebral artery were exposed to an enriched environment for 1 month. Bromodeoxyuridine was injected daily to label proliferating cells during the first postischemic week. Newborn cells were analyzed immunohistochemically after 4 weeks. Results-The enriched environment increased neurogenesis in the dentate gyrus in both intact and stroke-injured animals. An increased number of newborn cells was found in the subventricular zone of stroke-injured mice, but not in injured mice exposed to an enriched environment. Also, the number of newborn astrocytes (BrdUϩ/S-100ϩ cells), neuroblasts (dcxϩ cells), and reactive astrocytes (vimentin mRNA) in the striatum ipsilateral to the ischemic injury was markedly attenuated and new adult neurons (BrdUϩ/NeuNϩ) were not found. The enriched environment did not affect infarct size or mortality. Conclusions-An enriched environment after experimental stroke increased neurogenesis in the hippocampus, whereas there was a decreased cell genesis and migration of neuroblasts and newborn astrocytes in the striatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.