The effects of traumatic brain injury (TBI) on the thalamus are not well characterized. We analyzed neuronal degeneration and loss, apoptosis, programmed cell death-executing pathways, and neuroplastic responses in the rat thalamus during the first week after lateral fluid percussion injury (LFPI). The most prominent neurodegenerative and neuroplastic changes were observed in the region containing the posterior thalamic nuclear group and ventral posteromedial and posterolateral thalamic nuclei ipsilateral to the LFPI. There was progressive neurodegeneration in these regions, with maximal neuronal loss on Day 7. Increases in numbers of apoptotic cells were detected on Day 1 and were enhanced on Days 3 and 7 after TBI. There was unchanged expression of active caspase-3 at all postinjury time points, but there was increased expression of apoptosis-inducing factor (AIF) on Day 7. The AIF nuclear translocation was detected on Day 1 and was maximal on Day 7. Total thalamic synaptophysin expression was unchanged, but immunostaining intensities were increased at all time points after TBI. Decreased growth-associated protein-43 expression and signal intensity were observed on Day 1. Our results suggest that progressive neuronal damage and loss, AIF signaling pathway-dependent programmed cell death, and limited neuroplastic changes occur in the rat thalamus during the first week after LFPI induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.