We obtain the Lifshitz UV completion in a specific model for z ¼ 2 Lifshitz geometries. We use a vielbein formalism which enables identification of all the sources as leading components of well-chosen bulk fields. We show that the geometry induced from the bulk onto the boundary is a novel extension of Newton-Cartan geometry with a specific torsion tensor. We explicitly compute all the vacuum expectation values (VEVs) including the boundary stress-energy tensor and their Ward identities. After using local symmetries or Ward identities the system exhibits 6+6 sources and VEVs. The Fefferman-Graham expansion exhibits, however, an additional free function which is related to an irrelevant operator whose source has been turned off. We show that this is related to a second UV completion.
For a specific action supporting z = 2 Lifshitz geometries we identify the Lifshitz UV completion by solving for the most general solution near the Lifshitz boundary. We identify all the sources as leading components of bulk fields which requires a vielbein formalism. This includes two linear combinations of the bulk gauge field and timelike vielbein where one asymptotes to the boundary timelike vielbein and the other to the boundary gauge field. The geometry induced from the bulk onto the boundary is a novel extension of Newton-Cartan geometry that we call torsional Newton-Cartan (TNC) geometry. There is a constraint on the sources but its pairing with a Ward identity allows one to reduce the variation of the on-shell action to unconstrained sources. We compute all the vevs along with their Ward identities and derive conditions for the boundary theory to admit conserved currents obtained by contracting the boundary stress-energy tensor with a TNC analogue of a conformal Killing vector. We also obtain the anisotropic Weyl anomaly that takes the form of a Hořava-Lifshitz action defined on a TNC geometry. The Fefferman-Graham expansion contains a free function that does not appear in the variation of the on-shell action. We show that this is related to an irrelevant deformation that selects between two different UV completions.
Using target space null reduction of the Polyakov action, we find a novel covariant action for strings moving in a torsional Newton-Cartan geometry. Sending the string tension to zero while rescaling the Newton-Cartan clock 1-form, so as to keep the string action finite, we obtain a nonrelativistic string moving in a new type of non-Lorentzian geometry that we call Uð1Þ-Galilean geometry. We apply this to strings on AdS 5 × S 5 for which we show that the zero tension limit is realized by the spin matrix theory limits of the AdS/CFT correspondence. This is closely related to limits of spin chains studied in connection to integrability in AdS/CFT. The simplest example gives a covariant version of the Landau-Lifshitz sigma-model.
We find a Polyakov-type action for strings moving in a torsional Newton-Cartan geometry. This is obtained by starting with the relativistic Polyakov action and fixing the momentum of the string along a non-compact null isometry. For a flat target space, we show that the world-sheet theory becomes the Gomis-Ooguri action. From a target space perspective these strings are non-relativistic but their world-sheet theories are still relativistic. We show that one can take a scaling limit in which also the world-sheet theory becomes non-relativistic with an infinite-dimensional symmetry algebra given by the Galilean conformal algebra. This scaling limit can be taken in the context of the AdS/CFT correspondence and we show that it is realized by the 'Spin Matrix Theory' limits of strings on AdS 5 × S 5 . Spin Matrix theory arises as non-relativistic limits of the AdS/CFT correspondence close to BPS bounds. The duality between non-relativistic strings and Spin Matrix theory provides a holographic duality of its own and points towards a framework for more tractable holographic dualities whereby non-relativistic strings are dual to near BPS limits of the dual field theory.2 As will be clear in Sec. 2.1 we find in this paper that the TNC geometry is extended with a periodic target space direction.3 This Nambu-Goto form was also obtained in [20]. 4 The GCA was also observed in earlier work on non-relativistic limits of AdS/CFT [21]. See also Ref. [22] for useful work on representations of the GCA and aspects of non-relativistic conformal two-dimensional field theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.