We simulate open clusters containing up to 182 stars initially in the form of singles, binaries and triples. Due to the high interaction rate a large number of stable quadruples, quintuples, sextuples and higher order hierarchies form during the course of the simulations. For our choice of initial conditions, the formation rate of quadruple systems after about 2 Myr is roughly constant with time at ∼0.008 per cluster per Myr. The formation rates of quintuple and sextuple systems are about half and one‐quarter, respectively, of the quadruple formation rate, and both rates are also approximately constant with time. We present reaction channels and relative probabilities for the formation of persistent systems containing up to six stars. The reaction networks for the formation and destruction of quintuple and sextuple systems can become quite complicated, although the branching ratios remain largely unchanged during the course of the cluster evolution. The total number of quadruples is about a factor of 3 smaller than observed in the solar neighbourhood.
The impact of an idealised scenario of future mass release of major ice sheets on the Atlantic ocean is studied. A freshwater forcing is applied to the ocean surface in a coupled climate model forced in accordance with a high-end future climate projection for mass loss from the Greenland and Antarctic ice-sheet, together with the RCP8.5 emission scenario. The added freshwater dilutes the entire ocean by increasing total volume, but changes in freshwater budget are non-linear in time, especially in the Atlantic Ocean. In the Atlantic the initial dilution mainly comes from Greenland freshwater, but the increase in mass is counteracted by the mass flux across the boundaries of the Atlantic, with the outflow into the Southern Ocean becoming larger than the inflow through Bering Strait. Associated with this mass divergence, salt is exported to the Southern Ocean by the barotropic flow. Further freshening is associated with more freshwater import by the Atlantic Meridional Overturning Circulation across the southern boundary of the Atlantic. Also, the subtropical gyre exports salt and imports freshwater across the Atlantic's southern boundary, especially when freshwater from the Antarctic Ice Sheet arrives at the boundary of the basin. It appears that the response to Northern Hemisphere (NH) sources (the Greenland Ice Sheet) and Southern Hemisphere (SH) sources (the Antarctic Ice Sheet) are opposite. In the case of NH-only freshwater forcing, sea surface height (SSH) increases in the Arctic, causing a reduction of the SSH gradient over the Bering Strait, and hence the barotropic throughflow across the Arctic-Atlantic basin reduces. In case of SH-only freshwater forcing, SSH increases in the Pacific, enhancing the barotropic throughflow in the Arctic-Atlantic. When both NH and SH freshwater forcings are present, the response in the Atlantic is dominated by NH forcing. Changes in overturning transport to either NH or SH forcing counteract the response to changes in barotropic transport. These changes are not due to volume transport but mainly due to salinity changes, in particular across the southern boundary of the Atlantic. Only when both SH and NH freshwater forcing are present changes in barotropic transport and overturning transport reinforce each other: the barotropic transport more strongly reacts to NH forcing, while the overturning transport reacts more strongly to SH forcing.
Following a high-end projection for mass loss from the Greenland and Antarctic ice-sheets, a freshwater forcing was applied to the ocean surface in the coupled climate model EC-Earthv2.2 to study the response to meltwater release assuming an RCP8.5 emission scenario. The meltwater forcing results in an overall freshening of the Atlantic that is dominated by advective changes, strongly enhancing the freshening due to dilution by Greenland meltwater release. The strongest circulation change occurs in the western North Atlantic subpolar gyre and in the gyre in the Nordic Seas, leaving the North Atlantic subpolar gyre the region where most advective salt export occurs. Associated with counteracting changes in both gyre systems, the response of the Atlantic Meridional Overturning Circulation is rather weak over the 190 years of the experiment; it reduces with only 1 Sv ($$= 10^6$$ = 10 6 m $$^3$$ 3 s $$^{-1}$$ - 1 ), compared to changes in the subpolar gyre of 5 Sv. This relative insensitivity of the AMOC to the forcing is attributed to enhanced convection in the Nordic Seas and stronger overflows that compensate reduced convection in the Labrador and Irminger Seas, and lead to higher sea surface temperatures (SSTs) in the former and lower SSTs in the latter region. The weakened subpolar gyre in the west also shifts the North Atlantic Current and the subpolar-subtropical gyre boundary; with the subtropical gyre expanding, and the western subpolar gyre contracting. The SST changes are associated with obduction of Atlantic waters in the Nordic Seas that would otherwise obduct in the western subpolar gyre. The anomalous SSTs also induce a coupled ocean-atmosphere feedback that further strengthens the Nordic Seas circulation and weakens the western subpolar gyre. This occurs because the anomalous SST-gradient enhances the westerlies, especially between 65$$^{\circ }$$ ∘ N and 70$$^{\circ }$$ ∘ N; the associated increase in windstress curl consequently enhances the gyre in the Nordic Seas. This feedback is driven by the Greenland mass loss; Antarctic meltwater discharge causes a weaker, opposite response and more particularly affects the South Atlantic salinity budget through northward advection of low-salinity waters from the Southern Ocean. This effect, however, becomes visible only hundred years after the onset of Antarctic mass loss. We conclude that the response to freshwater forcing from both ice caps can lead to a complex response in the Atlantic circulation systems with opposing effects in different subbasins. The relative strength of the response is time-dependent and largely governed by internal feedbacks; the forcing acts mainly as a trigger and is decoupled from the response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.