It remains a wonder how Tregs induce tolerance for the development of cancer. Previously we have shown with melanoma patients that, increase in peripherally induced Tregs (pTregs) number in blood is related to the poor prognosis of the disease. In vitro induced Tregs (iTregs) and pTregs are remarkably similar and significantly different in functionality from tTregs. Here, we worked with 12 melanoma patients-six HLA A2 positive and six HLA A2 negative. PBL and tumor cells were obtained from the patients with informed consent. Treg cells were generated and isolated from four different culture conditions: 1) Isolated from tumor +PBL IVC, 2) Mart-1 A2 or 3) Flu A2 pulsed DC + PBL IVC and 4) purified CD4+CD25-cells stimulated with anti CD3 and antiCD28 plus IL-2. We used these different Treg generation conditions (self vs. non-self) to understand how induced Tregs behave phenotypically and functionally that would open number of avenues to over come their negative effects. Here we show some phenotypic and functional characteristics of the induced Treg (iTreg) cell in cultures with PBL from the patients. We analyzed those Tregs for their suppressive function in separate CTL generation assays. We observed that iTreg cells under different conditions do not uniformly express CD25, FoxP3, PDL-1 or CTLA 4 as the known surface markers. When analyzed for their functionality, with adjusted number of cells, in suppressing the anti tumor CTL response, a significant difference was observed. The most effective Tregs cells were found to be those isolated from autologous tumor +PBL IVC or from Mart-1 peptide pulsed DC + PBL IVC. Those cells completely blocked the CTL induction and secreted huge amount of IL-10 upon re-stimulation. Further analysis with these different types of iTreg cells in terms of various gene expressions and corresponding protein secretion will be useful to find a target molecule to block such expansions of iTregs or pTregs cells for better therapeutic outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.