European COST-action TD1305, IPROMEDAI aims to provide better understanding of mechanisms of antimicrobial surface designs of biomaterial implants and devices. Current industrial evaluation standard tests do not sufficiently account for different, advanced antimicrobial surface designs, yet are urgently needed to obtain convincing in vitro data for approval of animal experiments and clinical trials. This review aims to provide an innovative and clear guide to choose appropriate evaluation methods for three distinctly different mechanisms of antimicrobial design: (1) antimicrobial-releasing, (2) contact-killing and (3) non-adhesivity. Use of antimicrobial evaluation methods and definition of industrial standard tests, tailored toward the antimicrobial mechanism of the design, as identified here, fulfill a missing link in the translation of novel antimicrobial surface designs to clinical use.
Bacteria in the biofilm mode of growth are protected against chemical and mechanical stresses. Biofilms are composed, for the most part, of extracellular polymeric substances (EPSs). The extracellular matrix is composed of different chemical constituents, such as proteins, polysaccharides, and extracellular DNA (eDNA). Here we aimed to identify the roles of different matrix constituents in the viscoelastic response of biofilms. Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Pseudomonas aeruginosa biofilms were grown under different conditions yielding distinct matrix chemistries. Next, biofilms were subjected to mechanical deformation and stress relaxation was monitored over time. A Maxwell model possessing an average of four elements for an individual biofilm was used to fit the data. Maxwell elements were defined by a relaxation time constant and their relative importance. Relaxation time constants varied widely over the 104 biofilms included and were divided into seven ranges (<1, 1 to 5, 5 to 10, 10 to 50, 50 to 100, 100 to 500, and >500 s). Principal-component analysis was carried out to eliminate related time constant ranges, yielding three principal components that could be related to the known matrix chemistries. The fastest relaxation component (<3 s) was due to the presence of water and soluble polysaccharides, combined with the absence of bacteria, i.e., the heaviest masses in a biofilm. An intermediate component (3 to 70 s) was related to other EPSs, while a distinguishable role was assigned to intact eDNA, which possesses a unique principal component with a time constant range (10 to 25 s) between those of EPS constituents. This implies that eDNA modulates its interaction with other matrix constituents to control its contribution to viscoelastic relaxation under mechanical stress.
Device-Associated Urinary Tract InfectionsUrological devices are divided into several different market segments managing, for example, urinary incontinence, urinary stones, treatment of prostate hyperplasia or cancer, and erectile dysfunction. Devices aimed to manage urinary incontinence or maintain the ureter or urethra open and unobstructed, include ureteral stents for the upper urinary tract, urethral stents for the lower urinary tract, and urinary catheters. The focus of this paper is on catheter-and ureteral stent-associated UTI (Figure 1) as these are the major device groups and give rise to large numbers of infections worldwide. [10] In this review,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.