Early diagnosis of the harmful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with clinical expertise, allows governments to break the transition chain and flatten the epidemic curve. Although reverse transcription-polymerase chain reaction (RT-PCR) offers quick results, chest X-ray (CXR) imaging is a more reliable method for disease classification and assessment. The rapid spread of the coronavirus disease 2019 (COVID-19) has triggered extensive research towards developing a COVID-19 detection toolkit. Recent studies have confirmed that the deep learning-based approach, such as convolutional neural networks (CNNs), provides an optimized solution for COVID-19 classification; however, they require substantial training data for learning features. Gathering this training data in a short period has been challenging during the pandemic. Therefore, this study proposes a new model of CNN and deep convolutional generative adversarial networks (DCGANs) that classify CXR images into normal, pneumonia, and COVID-19. The proposed model contains eight convolutional layers, four max-pooling layers, and two fully connected layers, which provide better results than the existing pretrained methods (AlexNet and GoogLeNet). DCGAN performs two tasks: (1) generating synthetic/fake images to overcome the challenges of an imbalanced dataset and (2) extracting deep features of all images in the dataset. In addition, it enlarges the dataset and represents the characteristics of diversity to provide a good generalization effect. In the experimental analysis, we used four distinct publicly accessible datasets of chest X-ray images (COVID-19 X-ray, COVID Chest X-ray, COVID-19 Radiography, and CoronaHack-Chest X-Ray) to train and test the proposed CNN and the existing pretrained methods. Thereafter, the proposed CNN method was trained with the four datasets based on the DCGAN synthetic images, resulting in higher accuracy (94.8%, 96.6%, 98.5%, and 98.6%) than the existing pretrained models. The overall results suggest that the proposed DCGAN-CNN approach is a promising solution for efficient COVID-19 diagnosis.
High informative feature descriptors always improves the classification process. In order to classify the earth surface, it is essential to annotate satellite images using itshigh informative feature descriptors. In this proposed work, an annotation framework has been implemented to improve the image discrimination by extracting texture and edge based feature vectors. So the combination of these features subsequently fed into the Random Forest based Probability Neural Network (RF-PNN) classifier to make an annotation model. The experimental analysis with comparisons shows that the proposed annotation model well performed with earlier works and comparative results of benchmark datasets of AID dataset, UC-Merced Land-Use dataset and WHU-RS19 datasets have been documented with analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.