This article proposes a comparative method to assess the performance of artificial neural network's direct inverse control (DIC-ANN) with the PID control system. The comparison served as an analysis tool to assess the advantages of DIC-ANN over conventional control method for a UAV attitude controller. The development of ANN method for UAV control purposes arises due to the limitations of the conventional control method, which is the mathematical based model, involving complex expression, and most of them are difficult to be solved directly into analytic solution. Although the linearization simplified the solving process for such mathematical based model, omitting the nonlinear and the coupling terms is unsuitable for the dynamics of the multirotor vehicle. Thus, the DIC-ANN perform learning mechanism to overcome the limitation of PID tuning. Therefore, the proposed comparative method is developed to obtain conclusive results of DIC-ANN advantages over the linear method in UAV attitude control. Better achievement in the altitude dynamics was attained by the DIC-ANN compared to PID control method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.