BackgroundMosquito Larval Source Management (LSM) could be a valuable additional tool for integrated malaria vector control especially in areas with focal transmission like the highlands of western Kenya if it were not for the need to target all potential habitats at frequent intervals. The ability to determine the productivity of malaria vectors from identified habitats might be used to target LSM only at productive ones.MethodsEach aquatic habitat within three highland sites in western Kenya was classified as natural swamp, cultivated swamp, river fringe, puddle, open drain or burrow pit. Three habitats of each type were selected in each site in order to study the weekly productivity of adult malaria vectors from February to May 2009 using a sweep-net and their habitat characteristics recorded.ResultsAll surveyed habitat types produced adult malaria vectors. Mean adult productivity of Anopheles gambiae sensu lato in puddles (1.8/m2) was 11–900 times higher than in the other habitat types. However, puddles were the most unstable habitats having water at 43% of all sampling occasions and accounted for 5% of all habitats mapped in the study areas whereas open drains accounted for 72%. Densities of anopheline late instars larvae significantly increased with the presence of a biofilm but decreased with increasing surface area or when water was flowing. Taking stability and frequency of the habitat into account, puddles were still the most productive habitat types for malaria vectors but closely followed by open drains.ConclusionEven though productivity of An. gambiae s.l. was greatest in small and unstable habitats, estimation of their overall productivity in an area needs to consider the more stable habitats over time and their surface extension. Therefore, targeting only the highly productive habitats is unlikely to provide sufficient reduction in malaria vector densities.
BackgroundIndoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship.MethodsWHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05 %), permethrin (0.75 %) and deltamethrin (0.05 %). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies.ResultsWHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3 %), and two sites were moderately resistant to these insecticides (80.4 – 87.2 %). Homozygote kdr mutations of L1014S ranged from 73 to 88 % in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7–31 %) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75 % mortality after six months) and with the age of LLINs (60 % mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6–93.5 % mortality) and new LLINs (77.5–85.0 % mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6–85.0 %) than laboratory reared susceptible strain (100 %). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05).ConclusionThis study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.
BackgroundCharacteristics of aquatic habitats determine whether mosquitoes will oviposit, hatch, develop, pupate and successfully emerge into adults or not, thus influencing which mosquito species will occupy a habitat. This study determined whether physiochemical and biological characteristics differ between habitats with high and low presence of anopheline larvae.MethodsPhysical, chemical and biological characteristics were evaluated in selected habitats twice per month within three highland valleys in western Kenya. Aquatic macro-organisms were sampled using a sweep-net. Colorimetric methods were used to determine levels of iron, phosphate, nitrate, ammonium and nitrite in water samples. Generalized Estimating Equations (GEE) was used to compare parameters between the two categories of anopheline presence.ResultsHabitats with high anopheline presence had greater abundance of mosquito aquatic stages and tadpoles and two times more levels of nitrate in water, whereas habitats with low anopheline presence had wider biofilm cover and higher levels of iron in water.ConclusionHabitats of high and low presence of anopheline larvae, which differed in a number of physical, chemical and biological characteristics, were identified in valleys within western Kenya highlands. Differences in habitat characteristics are critical in determining the number of anopheline larvae that will fully develop and emerge into adults.
Aim: Soil-transmitted helminths (STH) and schistosomiasis are a major public health problem in Kenya as well as in many other tropical countries. Intestinal parasite infections have been associated with malabsorption and nutrient loses that can lead to malnutrition. Malnutrition is considered one of the most prevalent conditions among children in rural population. The aim of this study was to investigate the effects of STH and S. mansoni parasite infections on nutritional status of school children in Mwea rice Irrigation Scheme. Study Design: The study was descriptive cross-sectional in design. Methodology: The study was carried out in selected schools within Mwea Irrigation Scheme. The sample size comprised 236 children at the baseline with 78 pupils from Kandongu, 89 from Kirogo and 69 from Nyangati primary schools. A sub-sample of 103 pupils was randomly selected from the sample population and used to assess the prevalence of anaemia. A sub-sample was necessary in this case due to economic and logistic problems. Results: Overall prevalence rate of geohelminths and Schistosoma infections was found to be 26%. There was a strong relationship between infection and malnutrition with the number of pupils Original Research Article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.