Genetic variation for seed dormancy in nature is a typical quantitative trait controlled by multiple loci on which environmental factors have a strong effect. Finding the genes underlying dormancy quantitative trait loci is a major scientific challenge, which also has relevance for agriculture and ecology. In this study we describe the identification of the DELAY OF GERMINATION 1 (DOG1) gene previously identified as a quantitative trait locus involved in the control of seed dormancy. This gene was isolated by a combination of positional cloning and mutant analysis and is absolutely required for the induction of seed dormancy. DOG1 is a member of a small gene family of unknown molecular function, with five members in Arabidopsis. The functional natural allelic variation present in Arabidopsis is caused by polymorphisms in the cis-regulatory region of the DOG1 gene and results in considerable expression differences between the DOG1 alleles of the accessions analyzed.natural variation ͉ seed germination ͉ abscisic acid ͉ gibberellin ͉ cis variation
BackgroundThe plant hormone auxin exerts many of its effects on growth and development by controlling transcription of downstream genes. The Arabidopsis gene AXR3/IAA17 encodes a member of the Aux/IAA family of auxin responsive transcriptional repressors. Semi-dominant mutations in AXR3 result in an increased amplitude of auxin responses due to hyperstabilisation of the encoded protein. The aim of this study was to identify novel genes involved in auxin signal transduction by screening for second site mutations that modify the axr3-1 gain-of-function phenotype.ResultsWe present the isolation of the partial suppressor of axr3-1 (pax1-1) mutant, which partially suppresses almost every aspect of the axr3-1 phenotype, and that of the weaker axr3-3 allele. axr3-1 protein turnover does not appear to be altered by pax1-1. However, expression of an AXR3::GUS reporter is reduced in a pax1-1 background, suggesting that PAX1 positively regulates AXR3 transcription. The pax1-1 mutation also affects the phenotypes conferred by stabilising mutations in other Aux/IAA proteins; however, the interactions are more complex than with axr3-1.ConclusionWe propose that PAX1 influences auxin response via its effects on AXR3 expression and that it regulates other Aux/IAAs secondarily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.