Up to now, a large number of practical problems such as signal processing and network resource allocation have been formulated as the monotone variational inequality over the fixed point set of a nonexpansive mapping, and iterative algorithms for solving these problems have been proposed. The purpose of this article is to investigate a monotone variational inequality with variational inequality constraint over the fixed point set of one or finitely many nonexpansive mappings, which is called the triple-hierarchical constrained optimization. Two relaxed hybrid steepest-descent algorithms for solving the triple-hierarchical constrained optimization are proposed. Strong convergence for them is proven. Applications of these results to constrained generalized pseudoinverse are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.