A new class of potential magnetic resonance imaging contrast agents with nanosized mesoporous silica as the metal carrier is reported. Gadolinium-incorporated mesoporous silicas were synthesized by using longchain surfactant as a template. The products were characterized with X-ray powder diffraction, nitrogen adsorption-desorption isotherms, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, 29 Si-MAS NMR, and proton relaxivity. The materials showed much higher relaxivities, r 1 and r 2 , than Gd-DTPA. The particles are nanosized and can enter cells easily. This is a completely novel biomedical application of mesoporous silica materials.
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time-and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin ␣ v  3 is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the ␣ v  3 receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the ␣ v  3 integrin/integrin-linked kinase/ ERK signaling pathway.Bone is a mineralized tissue that underlies multiple mechanical and metabolic functions of the skeleton (1). Bone functions include maintaining blood calcium levels, providing mechanical support to soft tissues and serving as levers for muscle action, supporting hematopoiesis, and housing the brain and spinal cord (2). Formation and maintenance of bone tissue are regulated in a sophisticated fashion by boneforming osteoblasts and bone-resorbing osteoclasts (3). Development and differentiation of these two cell types are under tight regulation by a number of endogenous substances such as hormones, growth factors, and cytokines (4). These factors are individually secreted through endocrine, paracrine/autocrine, and neurocrine systems, with subsequent interaction essential to the delicate balance between bone-forming and -resorbing cells in the marrow microenvironment. An imbalance between the two cell types leads to pathogenesis of certain bone diseases including osteopetrosis and osteoporosis (5, 6).Osteoporosis is the most common human metabolic bone disorder characterized by progressive and age-dependent bone loss and increasing bone fracture risk. It is an important public health issue in postmenopausal women; if untreated, more than half of white women will experience fractures during their lifetime. Between 30 and 50% of women and 15-30% of men will suffer a fracture related to osteoporosis in their lifetime (7). Fractures increase morbidity and mortality and impose a financial burden on the community (8). A most compelling therapeutic need for osteoporosis at the present time is a drug that will substantially increase bone formation...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.