Thanks to the fast development of sensors, it is now possible to acquire sequences of hyperspectral images. Those hyperspectral video sequences are particularly suited for the detection and tracking of chemical gas plumes. However, the processing of this new type of video sequences with the additional spectral diversity, is challenging and requires the design of advanced image processing algorithms. In this paper, we present a novel method for the segmentation and tracking of a chemical gas plume diffusing in the atmosphere, recorded in a hyperspectral video sequence. In the proposed framework, the position of the plume is first estimated, using the temporal redundancy of two consecutive frames. Second, a Binary Partition Tree is built and pruned according to the previous estimate, in order to retrieve the real location and extent of the plume in the frame. The proposed method is validated on a real hyperspectral video sequence and compared with a state-of-the-art method.
BackgroundAutism Spectrum Disorder (ASD) is one of the fastest-growing developmental disorders in the United States. It was hypothesized that variations in the placental chorionic surface vascular network (PCSVN) structure may reflect both the overall effects of genetic and environmentally regulated variations in branching morphogenesis within the conceptus and the fetus’ vital organs. This paper provides sound evidences to support the study of ASD risks with PCSVN through a combination of feature-selection and classification algorithms.MethodsTwenty eight arterial and 8 shape-based PCSVN attributes from a high-risk ASD cohort of 89 placentas and a population-based cohort of 201 placentas were examined for ranked relevance using a modified version of the random forest algorithm, called the Boruta method. Principal component analysis (PCA) was applied to isolate principal effects of arterial growth on the fetal surface of the placenta. Linear discriminant analysis (LDA) with a 10-fold cross validation was performed to establish error statistics.ResultsThe Boruta method selected 15 arterial attributes as relevant, implying the difference in high and low ASD risk can be explained by the arterial features alone. The five principal features obtained through PCA, which accounted for about 88% of the data variability, indicated that PCSVNs associated with placentas of high-risk ASD pregnancies generally had fewer branch points, thicker and less tortuous arteries, better extension to the surface boundary, and smaller branch angles than their population-based counterparts.ConclusionWe developed a set of methods to explain major PCSVN differences between placentas associated with high risk ASD pregnancies and those selected from the general population. The research paradigm presented can be generalized to study connections between PCSVN features and other maternal and fetal outcomes such as gestational diabetes and hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.