As the largest and the basal-most family of conifers, Pinaceae provides key insights into the evolutionary history of conifers. We present comparative chloroplast genomics and analysis of concatenated 49 chloroplast protein-coding genes common to 19 gymnosperms, including 15 species from 8 Pinaceous genera, to address the long-standing controversy about Pinaceae phylogeny. The complete cpDNAs of Cathaya argyrophylla and Cedrus deodara (Abitoideae) and draft cpDNAs of Larix decidua, Picea morrisonicola, and Pseudotsuga wilsoniana are reported. We found 21- and 42-kb inversions in congeneric species and different populations of Pinaceous species, which indicates that structural polymorphics may be common and ancient in Pinaceae. Our phylogenetic analyses reveal that Cedrus is clustered with Abies–Keteleeria rather than the basal-most genus of Pinaceae and that Cathaya is closer to Pinus than to Picea or Larix–Pseudotsuga. Topology and structural change tests and indel-distribution comparisons lend further evidence to our phylogenetic finding. Our molecular datings suggest that Pinaceae first evolved during Early Jurassic, and diversification of Pinaceous subfamilies and genera took place during Mid-Jurassic and Lower Cretaceous, respectively. Using different maximum-likelihood divergences as thresholds, we conclude that 2 (Abietoideae and Larix–Pseudotsuga–Piceae–Cathaya–Pinus), 4 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, and Piceae–Cathaya–Pinus), or 5 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, Picea, and Cathaya–Pinus) groups/subfamilies are more reasonable delimitations for Pinaceae. Specifically, our views on subfamilial classifications differ from previous studies in terms of the rank of Cedrus and with recognition of more than two subfamilies.
With the recent attention and focus on quantitative methods for species delimitation, an overlooked but equally important issue regards what has actually been delimited. This study investigates the apparent arbitrariness of some taxonomic distinctions, and in particular how species and subspecies are assigned. Specifically, we use a recently developed Bayesian model-based approach to show that in the Hercules beetles (genus Dynastes) there is no statistical difference in the probability that putative taxa represent different species, irrespective of whether they were given species or subspecies designations. By considering multiple data types, as opposed to relying exclusively on genetic data alone, we also show that both previously recognized species and subspecies represent a variety of points along the speciation spectrum (i.e., previously recognized species are not systematically further along the continuum than subspecies). For example, based on evolutionary models of divergence, some taxa are statistically distinguishable on more than one axis of differentiation (e.g., along both phenotypic and genetic dimensions), whereas other taxa can only be delimited statistically from a single data type. Because both phenotypic and genetic data are analyzed in a common Bayesian framework, our study provides a framework for investigating whether disagreements in species boundaries among data types reflect (i) actual discordance with the actual history of lineage splitting, or instead (ii) differences among data types in the amount of time required for differentiation to become apparent among the delimited taxa. We discuss what the answers to these questions imply about what characters are used to delimit species, as well as the diverse processes involved in the origin and maintenance of species boundaries. With this in mind, we then reflect more generally on how quantitative methods for species delimitation are used to assign taxonomic status.
In the age of next-generation sequencing, the number of loci available for phylogenetic analyses has increased by orders of magnitude. But despite this dramatic increase in the amount of data, some phylogenomic studies have revealed rampant gene-tree discordance that can be caused by many historical processes, such as rapid diversification, gene duplication, or reticulate evolution. We used a target enrichment approach to sample 400 single-copy nuclear genes and estimate the phylogenetic relationships of 13 genera in the lichen-forming family Lobariaceae to address the effect of data type (nucleotides and amino acids) and phylogenetic reconstruction method (concatenation and species tree approaches). Furthermore, we examined datasets for evidence of historical processes, such as rapid diversification and reticulate evolution. We found incongruence associated with sequence data types (nucleotide vs. amino acid sequences) and with different methods of phylogenetic reconstruction (species tree vs. concatenation). The resulting phylogenetic trees provided evidence for rapid and reticulate evolution based on extremely short branches in the backbone of the phylogenies. The observed rapid and reticulate diversifications may explain conflicts among gene trees and the challenges to resolving evolutionary relationships. Based on divergence times, the diversification at the backbone occurred near the Cretaceous-Paleogene (K-Pg) boundary (65 Mya) which is consistent with other rapid diversifications in the tree of life. Although some phylogenetic relationships within the Lobariaceae family remain with low support, even with our powerful phylogenomic dataset of up to 376 genes, our use of target-capturing data allowed for the novel exploration of the mechanisms underlying phylogenetic and systematic incongruence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.