A 10-cell high-temperature polymer electrolyte fuel cell (HT-PEFC) stack with an active cell area of 200 cm2 has been built up and tested with regard to the temperature distribution from cell to cell and over the active area since not every cell is cooled. Measurements with artificial reformate as a fuel show that the vertical temperature distribution over the active area is sufficiently small, with a maximum of 5.1 K at 550 mA cm−2. Additionally, the temperature gradient from cell to cell is sufficiently small with 10.7 K at 550 mA cm−2. As a result, it can be concluded that the heat pipe supported external cooling is well suited to cool HT-PEFC stacks with large active areas in reformate operation.
One promising future application for a high temperature polymer electrolyte fuel cell (HT-PEFC) stack coupled with a reformer is an auxiliary power unit (APU) for mobile applications using diesel or kerosene which is also used for the main engine. Despite of the high efficiency of a HT-PEFC, the stack has to be cooled during operation. Hence, this work focuses on the investigation of different cooling strategies regarding the complete system, the use of heat transfer oil as cooling medium is fixed in this contribution. In detail, three cooling methods to maintain operating temperature in stacks with more than 1 kW electrical power and large active areas (> 200 cm2 per cell) were analyzed. In the first method heat transfer oil flows through the stack in internal channels that are located on the backside of the cathode-side bipolar plate. In the second cooling arrangement the oil flows through capsuled cooling cells, which are arranged between every third electrochemical cell. For the third cooling method the excellent heat conducting properties of heat pipes are used. Outside the stack, the heat is removed by heat transfer oil from the overlapping heat pipes. These three methods were evaluated experimentally and with CFD simulations. In this paper the detailed measurements of the temperature distributions are presented containing the overall result that all cooling methods are applicable to maintain the temperatures of large HT-PEFC stacks during the operation in an APU system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.