We propose a fully automatic segmentation method called nested graph cut to segment images (2D or 3D) that contain multiple objects with a nested structure. Compared to other graph-cut-based methods developed for multiple regions, our method can work well for nested objects without requiring manual selection of initial seeds, even if different objects have similar intensity distributions and some object boundaries are missing. Promising results were obtained for separating the brain ventricles, the head, and the uterus region in the mouse-embryo head images obtained using high-frequency ultrasound imaging. The proposed method achieved mean Dice similarity coefficients of 0.87 ±0.04 and 0.89 ±0.06 for segmenting BVs and the head, respectively, compared to manual segmentation results by experts on 40 3D images over five gestation stages.
This paper presents a fully automatic segmentation system for whole-body high-frequency ultrasound (HFU) images of mouse embryos that can simultaneously segment the body contour and the brain ventricles (BVs). Our system first locates a region of interest (ROI), which covers the interior of the uterus, by sub-surface analysis. Then, it segments the ROI into BVs, the body, the amniotic fluid, and the uterine wall, using nested graph cut. Simultaneously multilevel thresholding is applied to the whole-body image to propose candidate BV components. These candidates are further truncated by the embryo mask (body+BVs) to refine the BV candidates. Finally, subsets of all candidate BVs are compared with pre-trained spring models describing valid BV structures, to identify true BV components. The system can segment the body accurately in most cases based on visual inspection, and achieves average Dice similarity coefficient of 0.8924 ± 0.043 for the BVs on 36 HFU image volumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.