The numbers of immune-activated brain mononuclear phagocytes (MPs) affect the progression of human immunodeficiency virus (HIV)-1-associated dementia (HAD). Such MPs originate , in measure , from a pool of circulating monocytes. To address the mechanism(s) for monocyte penetration across the bloodbrain barrier (BBB) , we performed cross-validating laboratory , animal model , and human brain tissue investigations into HAD pathogenesis. First , an artificial BBB was constructed in which human brain microvascular endothelial and glial cells-astrocytes, microglia , and/or monocyte-derived macrophages (MDM)-were placed on opposite sides of a matrixcoated porous membrane. Second , a SCID mouse model of HIV-1 encephalitis (HIVE) was used to determine in vivo monocyte blood-to-brain migration. Third , immunohistochemical analyses of human HIVE tissue defined the relationships between astrogliosis , activation of microglia , virus infection, monocyte brain infiltration , and -chemokine expression. The results , taken together , showed that HIV-1-infected microglia increased monocyte migration through an artificial BBB 2 to 3.5 times more than replicate numbers of MDM. In the HIVE SCID mice, a marked accumulation of murine MDM was found in areas surrounding virus-infected human microglia but not MDM. For human HIVE , microglial activation and virus infection correlated with astrogliosis, monocyte transendothelial migration , and -chemokine expression. Pure cultures of virus-infected and activated microglia or astrocytes exposed to microglial conditioned media produced significant quantities of -chemokines. We conclude that microglial activation alone and/or through its interactions with astrocytes induces -chemokine-mediated monocyte migration in HAD. (Am J Pathol 1999, 155:1599 -1611)
Elucidation of the factors involved in host defense against human immunodeficiency viral infection remains pivotal if viral control may be achieved. Toward these ends, we investigated the function of a putative antiretroviral factor, OTK18, isolated by differential display of mRNA from HIV type 1-infected primary human monocyte-derived macrophages. Molecular and immunohistochemical analyses showed that the OTK18 nucleotide sequence contains 13 adjacent C2H2-type zinc finger motifs, a Krüppel-associated box, and is localized to both cytosol and nucleus. Mutational analyses revealed that both the Krüppel-associated box and zinc finger regions of OTK18 are responsible for the transcriptional suppressive activities of this gene. OTK18 was copiously expressed in macrophages following HIV type I infection and diminished progeny virion production. A mechanism for this antiretroviral activity was by suppression of HIV type 1 Tat-induced viral long terminal repeat promoter activity. Our findings suggest that one possible function of OTK18 is as a HIV type 1-inducible transcriptional suppresser.
Human immunodeficiency virus type 1 (HIV-1) infection in mononuclear phagocyte lineage cells (monocytes, macrophages, and microglia) is a critical component in the pathogenesis of viral infection. Viral replication in macrophages serves as a reservoir, a site of dissemination, and an instigator for neurological sequelae during HIV-1 disease. Recent studies demonstrated that chemokine receptors are necessary coreceptors for HIV-1 entry which determine viral tropism for different cell types. To investigate the relative contribution of the β-chemokine receptors CCR3 and CCR5 to viral infection of mononuclear phagocytes we utilized a panel of macrophage-tropic HIV-1 strains (from blood and brain tissue) to infect highly purified populations of monocytes and microglia. Antibodies to CD4 (OKT4A) abrogated HIV-1 infection. The β chemokines and antibodies to CCR3 failed to affect viral infection of both macrophage cell types. Antibodies to CCR5 (3A9) prevented monocyte infection but only slowed HIV replication in microglia. Thus, CCR5, not CCR3, is an essential receptor for HIV-1 infection of monocytes. Microglia express both CCR5 and CCR3, but antibodies to them fail to inhibit viral entry, suggesting the presence of other chemokine receptors for infection of these cells. These studies demonstrate the importance of mononuclear phagocyte heterogeneity in establishing HIV-1 infection and persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.