<p id="docs-internal-guid-6a9909c3-7fff-4ac4-3e3a-a2f823e1246f" dir="ltr"><span>A new design of microstrip dual mode band-pass-filter (BPF) by using stepped impedance resonator (SIR) based on shorting pin is proposed. The designed structure use two U-shaped tri-sections SIR resonators coupled to each other and a two coupled line feeding ports each of 50 ohm impedance. Shorting pins are used to excite the upper frequency passband in the re sponse of the filter due to current distribution perturbation at the locations of the shorting pins. For demonstration, WLAN (5.2-5.7 GHz) and GSM (1.85-1.99 GHz) and Advanced Wireless Services (AWS) (1.71-1.755 GHz). The return losses are -32.469 dB and -26.18 dB respectively at the operating frequencies of the filter. The results of insertion losses of the filter is 0.37 and 0.24 dB during the operating bands and more than 25 dB which consider a good out-of- band rejection. </span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.