A design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings indicate that the PV temperature would increase from 65 to 73 °C, when the solar irradiation increases from 500 to 960 W/m2, with and without cooling, respectively. Meanwhile, the output power increased from 35 to 55 W when the solar irradiation increased from 500 to 960 W/m2 during the daytime. The impact of varying the mass flow rate of cooling water in the range of 4 to 16 L/min was also examined, and it was found that the cell temperature declines as the water flow increases in intensity throughout the daytime. The maximum cell temperature recorded for PV modules without cooling was in the middle of the day. The lowest cell temperature was also recorded in the middle of the day for a PVT solar system with 16 L/min of cooling water.
Wind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under different working conditions. Furthermore, the effect of the design factors was investigated such as the number and size of the blades on the behavior and performance of VAWT. It was assumed that the vertical wind blade works in different sites of Iraq. QBlade software (Version 8) was used to achieve the calculations and optimization processes to obtain the optimal design of vertical axis wind turbines that is suitable for the promising sites. The results proved that accurate results can be obtained by using QBlade software.
Most of failures in the friction clutches occur due to the excessive heat generated due to friction between various parts, and this heat causes high temperatures leading to high thermal stresses. In the present research paper, numerical simulation had been developed using finite element method to simulate the thermal behavior of the dry friction clutch. Three-dimensional finite element model was made and analyzed using ANSYS/Workbench sofware18. The friction clutch system was firstly modeled mathematically and solved numerically to determine the transient thermal response of the clutch disc. The two fundamental methods of uniform wear and uniform pressure are assumed. The applied torque during the sliding period was constant. The temperature and heat generated were estimated for each clutch part (pressure plate, clutch disc and flywheel) using heat partition ratio. The assumptions that are inherent in the derivation of the governing equations are presented which followed up by the appropriate boundary conditions. The results show that the maximum temperature values for uniform pressure condition are greater than those for uniform wear condition. Also, the temperature value increased with time and approximately reaches the highest value at the middle of the sliding period when the applied torque is constant with time and then decreased to the final values at the end of slipping period.
The influence of different concentrations and nanoparticles’ diameter of silicon dioxide nanoparticles on the Nusselt number enhancement ratio and friction factor for solar thermal collector (STC) was examined numerically. The CFD model was designed to show the influence of the flow of water/SiO2 and pure water inside the pipe on the enhancement of the performance of the STC. Different concentrations of SiO2 nanoparticles are used (ϕ = 1–4%) with several nanoparticle diameters (dp = 20–50 nm). The water/SiO2 and pure water flow under different Reynolds numbers ranging from 5,000 to 30,000. The average Nusselt numbers Nuavg improved by increasing the Reynolds numbers for both fluids. The Nuavg increases with the increase in the concentration of SiO2 nanoparticles. The water/SiO2 with nanoparticle concentration of (ϕ = 5%) and nanoparticle diameter of (dp = 20 nm) has the highest Nusselt number. The Nuavg enhances 25% with water/SiO2 nanofluid flow at Re = 5,000 and 15% flow at Re = 30,000. It is noted that the skin friction factor decreases with the increase in the Reynolds number for both fluids. Water/SiO2 nanofluid has a higher skin friction factor than pure water. The Nuavg improved by 31% at the lowest Reynolds number by using water/SiO2 nanofluid as the working fluid with a change in the concentration of SiO2 nanoparticles from (ϕ = 1%) to (ϕ = 4%) and improved by 42% at the highest Reynolds number of 30,000. The decrease in the nanoparticle diameter led to an increase in the Nusselt number across all Reynolds numbers. The lowest size SiO2 nanoparticles (dp = 20 nm) provides the highest Nusselt number. The lowest size SiO2 nanoparticles (dp = 20 nm) provide the highest ratio of enhancement for the Nusselt number in STC. This investigation has confirmed that the flow of water/SiO2 with AL2O3 nanoparticles of 5% (diameter of 20 nm) has a significant influence on heat transfer enhancement to improve the thermal efficiency of STC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.