Sensitive biological compounds, such as vaccines and antibiotics, traditionally require a time-dependent “cold chain” to maximize therapeutic activity. This flawed process results in billions of dollars worth of viable drug loss during shipping and storage, and severely limits distribution to developing nations with limited infrastructure. To address these major limitations, we demonstrate self-standing silk protein biomaterial matrices capable of stabilizing labile vaccines and antibiotics, even at temperatures up to 60 °C over more than 6 months. Initial insight into the mechanistic basis for these findings is provided. Importantly, these findings suggest a transformative approach to the cold chain to revolutionize the way many labile therapeutic drugs are stored and utilized throughout the world.
Molecular imprinting provides a rational design strategy for the development of controlled release drug delivery systems. We demonstrate that imprinting a network results in macromolecular memory for the template molecule, indicated by the two or more times greater partitioning into these networks as compared to non-imprinted networks. Partitioning of drug into networks synthesized from multiple functional monomers was 8 times greater than networks synthesized from single monomers. One-dimensional permeation studies showed that the gel with maximum incorporated chemical functionality had the lowest diffusion coefficient, which was at least an order of magnitude lower than all other gels studied. All imprinted networks had significantly lower diffusion coefficients than non-imprinted networks, in spite of comparable mesh sizes and equilibrium polymer volume fractions in the swollen state. This work also demonstrates molecular imprinting using a "living/controlled" polymerization strategy to enhance template loading/affinity and delay release in weakly crosslinked gels. Recognition studies revealed more than a 50% increase in template loading and dynamic template release studies showed that imprinting via "living" polymerization extends or delays the template release profile by two-fold over that of imprinting via conventional free-radical polymerization techniques and four-fold over the control network. The imprinted gel and imprinted gel prepared via "living/controlled" polymerization release profiles were less Fickian and moved toward zero-order release with profile coefficients of 0.68 and 0.70, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.