Systemic administration of Salmonella to tumor-bearing mice leads to preferential accumulation within tumor sites and retardation of tumor growth. However, the detailed mechanism of Salmonella-induced antitumor immune response via host T cell remains uncertain. Herein, we used wild-type, CD4(+) T-cell-deficient, and CD8(+) T-cell-deficient mice to study the role of T cell in the antitumor immune responses induced by Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis). When systemically administered into mice bearing tumors, Salmonella Choleraesuis significantly inhibited tumor growth by 50%. In contrast, in T-cell-deficient mice, there was only 34-42% inhibition of tumor growth. We found that treatment with Salmonella Choleraesuis significantly upregulates interferon-γ in wild-type and CD8(+) T-cell-deficient mice, but not in CD4(+) T-cell-deficient mice. Furthermore, immunohistochemical staining of the tumors revealed more infiltration of macrophages and neutrophils in wild-type mice after Salmonella Choleraesuis treatment compared with those in T-cell-deficient mice. The antitumor therapeutic effect mediated by Salmonella Choleraesuis is associated with an inflammatory immune response at the tumor site and a tumor T helper 1-type immune response. In conclusion, these results suggest that tumor-targeted therapy using Salmonella Choleraesuis, which exerts tumoricidal effects and stimulates T cell activities, represents a potential strategy for the treatment of tumor.
Systemic administration of Salmonella to tumor-bearing mice leads to the preferential accumulation within tumor sites and retardation of the tumor growth. Host factors including innate and adaptive immune responses influence Salmonella-induced antitumor activity. Antitumor activities of Salmonella are not only determined by the tumor regression but also by the host immune response. Herein, we demonstrated that B cells play an important role in the antitumor activity mediated by Salmonella. Body weight and survival of B cell-deficient mice were decreased compared with wild-type, CD8(+) cell-deficient, or CD4(+) cell-deficient mice after Salmonella administration. Although Salmonella accumulated within the tumors in B cell-deficient mice, the bacterial loads of healthy organs were higher than those in wild-type mice. The inflammation cytokine and bacteremia were found in B cell-deficient mice after Salmonella treatment. When Salmonella accumulated within the tumor, B cells inhibited the dissemination of Salmonella to other healthy organs. The depletion of host B cells resulted in a noticeably higher total number of Salmonella in the tumor and inhibited tumor growth. Meanwhile, B cell-depletive and B cell-adoptive transfer of serum experiments demonstrated that the natural antibody produced by B cell takes part in the control of Salmonella dissemination in tumor-bearing mice. In this study, we want to address the mechanisms of incorporating host immunoresponse as a way to augment the antitumor activities of Salmonella.
Hypoxia, a hallmark of many solid tumors, is associated with angiogenesis and tumor progression. Hypoxia-inducible factor-1 (HIF-1) plays a significant role in tumor angiogenesis. In this study, the authors constructed a selective platform to screen the traditional Chinese medicine as anti-angiogenic agent. The authors examined the molecular mechanism by which Scutellaria barbata regulates HIF-1-dependent expression of vascular endothelial growth factor (VEGF), which is an important angiogenic factor. Hypoxia promotes angiogenesis by increasing VEGF expression and secretion. Herein, the expression of VEGF was decreased by treatment with S. barbata in tumor cells. Meanwhile, S. barbata reduced the migration and proliferation of endothelial cells under hypoxic condition. S. barbata inhibited the expression of HIF-1α, as well as phosphorylated their upstream signal mediators AKT. S. barbata significantly inhibited the tumor growth in vivo and immunohistochemical studies in the tumors revealed decreased intratumoral microvessel density. These results suggest that the traditional Chinese medicine therapy using S. barbata, which exerts anti-angiogenic activities, represents a promising strategy for the treatment of tumors.
BackgroundAngiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model.MethodsLentiviral vector encoding kallistatin (LV-Kallistatin) was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA), and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice.ResultsThe conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, and nuclear factor κB (NF-κB) transcriptional activity were reduced in the LV-Kallistatin-treated mice.ConclusionResults of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer.
The use of Salmonella as a potential antitumor agent has been investigated, but innate immunity against this bacterium reduces the efficacy of its tumor-targeting and antitumor activities. The purpose of this study was to investigate the modulation of the tumor-targeting efficiency of Salmonella enterica serovar choleraesuis by modifying the immune response to these bacteria by coating them with poly(allylamine hydrochloride) (PAH), designated PAH-S.C. To evaluate this modulation, we used naïve mice and mice immunized with Salmonella to study the role of the preexisting immune response to the antitumor activity of PAH-S.C. When anti-Salmonella antibodies were present, the invasion activity, cytotoxicity, and gene transfer of Salmonella was significantly decreased, both in vitro and in vivo. Treatment with PAH-S.C. resulted in delayed tumor growth and enhanced survival in immunized mice. Furthermore, immunohistochemical studies of the tumors revealed the infiltration of neutrophils and macrophages in immunized mice treated with PAH-S.C. These results indicate that Salmonella encapsulation effectively circumvented the Salmonella-specific immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.