Summary
1. We used high‐frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism.
2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid‐autumn but dropped during the typhoon season and winter. Yuan‐Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production −39.6 μmole O2 m−3).
3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons.
4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism.
5. Seasonal winter mixing and typhoon‐induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere.
We studied how typhoon strength affects the daily dynamics of ecosystem metabolism of a subtropical alpine lake in Taiwan. We identified proximal agents of typhoon disturbance and assessed the resistance (the extent of change induced by a disturbance) and resilience (the rate of recovery after a disturbance) of lake metabolism to them. Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production were estimated from high-frequency dissolved oxygen data provided by an instrumented buoy. Typhoons resulted in significantly lower GPP (3%–81% decrease), and higher ER (7%–828% increase) compared with immediately before the events, and thus the lake became more heterotrophic (28%–852% increase in heterotrophy). The resistance and resilience of lake metabolism depended on the intensity of the typhoon. Smaller typhoons (with average daily accumulated precipitation (ADAP) < 200 mm·day–1) had greater effects on lake metabolism than medium (ADAP = 200–350 mm·day–1) and large (ADAP > 350 mm·day–1) typhoons. However, metabolism also recovered more quickly after smaller typhoons than after medium or larger typhoons. Typhoon effects on ecosystem metabolism is likely mediated by the magnitude and duration of typhoon-induced changes in lake mixing, the quantity and quality of dissolved organic carbon, and the biomass of primary producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.