The central arbiter of cell fate in response to DNA damage is p53, which regulates the expression of genes involved in cell cycle arrest, survival and apoptosis. Although many responses initiated by DNA damage have been characterized, the role of actin cytoskeleton regulators is largely unknown. We now show that RhoC and LIM kinase 2 (LIMK2) are direct p53 target genes induced by genotoxic agents. Although RhoC and LIMK2 have well-established roles in actin cytoskeleton regulation, our results indicate that activation of LIMK2 also has a pro-survival function following DNA damage. LIMK inhibition by siRNA-mediated knockdown or selective pharmacological blockade sensitized cells to radio-or chemotherapy, such that treatments that were sub-lethal when administered singly resulted in cell death when combined with LIMK inhibition. Our findings suggest that combining LIMK inhibitors with genotoxic therapies could be more efficacious than single-agent administration, and highlight a novel connection between actin cytoskeleton regulators and DNA damage-induced cell survival mechanisms.
It is currently thought that treatment for spinal cord injury (SCI) will involve a combined pharmacological and biological approach; however, testing their efficacy in animal models of SCI is time-consuming and requires large animal cohorts. For this reason we have modified our myelinating cultures as an in vitro model of SCI and studied its potential as a prescreen for combined therapeutics. This culture comprises dissociated rat embryonic spinal cord cells plated onto a monolayer of astrocytes, which form myelinated axons interspaced with nodes of Ranvier. After cutting the culture, an initial cell-free area appears persistently devoid of neurites, accompanied over time by many features of SCI, including demyelination and reduced neurite density adjacent to the lesion, and infiltration of microglia and reactive astrocytes into the lesioned area. We tested a range of concentrations of the Rho inhibitor C3 transferase (C3) and ROCK inhibitor Y27632 that have been shown to promote SCI repair in vivo. C3 promoted neurite extension into the lesion and enhanced neurite density in surrounding areas but failed to induce remyelination. In contrast, while Y27632 did not induce significant neurite outgrowth, myelination adjacent to the lesion was dramatically enhanced. The effects of the inhibitors were concentration-dependent. Combined treatment with C3 and Y27632 had additive affects with an enhancement of neurite outgrowth and increased myelination adjacent to the lesion, demonstrating neither conflicting nor synergistic effects when coadministered. Overall, these results demonstrate that this culture serves as a useful tool to study combined strategies that promote CNS repair.
Collective epithelial cell migration facilitates formation and maintenance of continuous sheets that line the surfaces and cavities of glands and tissues. By screening Rho GTPase regulators, myosin-IXA RhoGAP was identified as a key requirement for cell-cell adhesions that permit collective migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.