Vertebrate hair cells are responsible for the high fidelity encoding of mechanical stimuli into trains of action potentials (spikes) in afferent neurons. Here, we generated a transgenic zebrafish line expressing Channelrhodopsin-2 (ChR2) under the control of the hair-cell specific myo6b promoter, in order to examine the role of the mechanoelectrical transduction (MET) channel in sensory encoding in afferent neurons. We performed in vivo recordings from afferent neurons of the zebrafish lateral line while activating hair cells with either mechanical stimuli from a waterjet or optical stimuli from flashes of ∼470-nm light. Comparison of the patterns of encoded spikes during 100-ms stimuli revealed no difference in mean first spike latency between the two modes of activation. However, there was a significant increase in the variability of first spike latency during optical stimulation as well as an increase in the mean number of spikes per stimulus. Next, we compared encoding of spikes during hair-cell stimulation at 10, 20, and 40-Hz. Consistent with the increased variability of first spike latency, we saw a significant decrease in the vector strength of phase-locked spiking during optical stimulation. These in vivo results support a physiological role for the MET channel in the high fidelity of first spike latency seen during encoding of mechanical sensory stimuli. Finally, we examined whether remote activation of hair cells via ChR2 activation was sufficient to elicit escape responses in free-swimming larvae. In transgenic larvae, 100-ms flashes of ∼470-nm light resulted in escape responses that occurred concomitantly with field recordings indicating Mauthner cell activity. Altogether, the myo6b:ChR2 transgenic line provides a platform to investigate hair-cell function and sensory encoding, hair-cell sensory input to the Mauthner cell, and the ability to remotely evoke behavior in free-swimming zebrafish.
Purpose The phase delay of stimulus frequency otoacoustic emissions (SFOAEs) has been proposed as a noninvasive, objective, and fast source for estimating cochlear mechanical tuning. However, the implementation of SFOAEs clinically has been thwarted by the gaps in understanding of the stability of SFOAE delay-based tuning estimates and their relationship to behavioral measures of tuning. Therefore, the goals of this study were (a) to investigate the relationship between delay-based tuning estimates from SFOAEs and simultaneously masked psychophysical tuning curves (PTCs) and (b) to assess the across- and within-session repeatability of tuning estimates from behavioral and OAE measures. Method Three sets of behavioral and OAE measurements were collected in 24 normal-hearing, young adults for two probe frequencies, 1 and 4 kHz. For each participant, delay-based tuning estimates were derived from the phase gradient of SFOAEs. SFOAE-based and behavioral estimates of tuning obtained using the fast-swept PTC paradigm were compared within and across sessions. Results In general, tuning estimates were sharper at 4 kHz compared to 1 kHz for both PTCs and SFOAEs. Statistical analyses revealed a significant correlation between SFOAE delay-based tuning and PTCs at 4 kHz, but not 1 kHz. Lastly, SFOAE delay-based tuning estimates showed better intra- and intersession repeatability compared to PTCs. Conclusions SFOAE phase-gradient delays reflect aspects of cochlear mechanical tuning, in that a frequency dependence similar to that of basilar membrane tuning was observed. Furthermore, the significant correlation with PTCs at 4 kHz and the high repeatability of SFOAE-based tuning measures offer promise of an objective, nonbehavioral assay of tuning in human ears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.