Understanding drivers of disturbances across scales is critical as environmental constraints change in a warming climate. Outbreaks of native bark beetles (Curculionidae: Scolytinae) are key natural disturbances that shape the structure and function of conifer forests across the northern hemisphere. While drivers of bark beetle outbreaks have been studied extensively at spatial scales ranging from stands to continents, within‐stand processes governing individual tree mortality in an outbreak are less well understood. Here, we use a spatially explicit long‐term monitoring dataset of a lodgepole pine (Pinus contorta var. latifolia) forest (>9000 individually mapped trees in three 2‐ha plots) impacted by a severe mountain pine beetle (Dendroctonus ponderosae) outbreak to explore interactions among fine scale drivers of beetle‐caused tree mortality. Using a Bayesian spatial modeling approach, we evaluated how tree scale and tree neighborhood scale characteristics interact with tree size to mediate host tree susceptibility to mountain pine beetle outbreak in the Southern Rocky Mountains (USA). We found evidence that both tree growth rate preceding the outbreak and neighborhood structure (within a 10 meter radius of the host tree) mediate the effect of tree size, and that the direction and magnitude of these mediating effects vary with tree size. Tree scale mortality probability increased with pre‐outbreak growth rate for small to medium sized host trees (~10–25 cm diameter), but that same effect was not detected for large trees. Conversely, tree scale mortality probability increased with greater neighborhood density, with the most pronounced effects for medium to large sized host trees (~15–30 cm diameter). Within‐stand topographic variability was not an important predictor of mortality probability; among stands, however, the stand in the driest topographic position experienced the greatest overall mortality. By explicitly considering how within‐stand heterogeneity mediates individual tree scale susceptibility to bark beetle outbreak, our findings bridge an important gap in understanding multi‐scale drivers of disturbance dynamics.
Promoting ecological resilience to increasing disturbance activity is a key management priority under warming climate. Across the Northern Hemisphere, tree mortality from widespread bark beetle outbreaks raises concerns for how forest management can foster resilience to future outbreaks. Density reduction (i.e., thinning) treatments can increase vigor of remaining trees, but the longevity of treatment efficacy for reducing susceptibility to future disturbance remains a key knowledge gap. Using one of the longest‐running replicated experiments in old‐growth subalpine forests, we measured stand structure following a recent (early 2000s) severe mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak to examine the legacy of historical (1940s) thinning treatments on two components of resilience. We asked: ‘How did historical thinning intensity affect (1) tree‐scale survival probability and stand‐scale survival proportion (collectively “resistance” to outbreak) for susceptible trees (lodgepole pine [Pinus contorta] ≥ 12 cm diameter) and (2) post‐outbreak stand successional trajectories?’ Overall outbreak severity was high (MPB killed 59% of susceptible individuals and 78% of susceptible basal area), and historical thinning had little effect on tree‐scale and stand‐scale resistance. Tree‐scale survival probability decreased sharply with increasing tree diameter and did not differ from the control (uncut stands) in the historical thinning treatments. Stand‐scale proportion of surviving susceptible trees and basal area did not differ from the control in historically thinned stands, except for treatments that removed nearly all susceptible trees, in which survival proportion approximately doubled. Despite limited effects on resistance to MPB outbreak, the legacy of historical treatments shifted dominance from large‐diameter to small‐diameter lodgepole pine by the time of outbreak, resulting in historically thinned stands with ~2× greater post‐outbreak live basal area than control stands. MPB‐driven mortality of large‐diameter lodgepole pine in control stands and density‐dependent mortality of small‐diameter trees in historically thinned stands led to convergence in post‐outbreak live tree stand structure. One exception was the heaviest historical thinning treatments (59–77% basal area removed), for which sapling dominance of shade‐tolerant, unsusceptible conifers was lower than control stands. After six decades, thinning treatments have had minimal effect on resistance to bark beetle outbreaks, but leave persistent legacies in shaping post‐outbreak successional trajectories.
1. Amplified by warming temperatures and drought, recent outbreaks of native bark beetles (Curculionidae: Scolytinae) have caused extensive tree mortality throughout Europe and North America. Despite their ubiquitous nature and important effects on ecosystems, forest recovery following such disturbances is poorly understood, particularly across regions with varying abiotic conditions and outbreak effects. 2. To better understand post-outbreak recovery across a topographically complex region, we synthesized data from 16 field studies spanning subalpine forests in the Southern Rocky Mountains, USA. From 1997 to 2019, these forests were heavily affected by outbreaks of three native bark beetle species (Dendroctonus ponderosae, Dendroctonus rufipennis and Dryocoetes confusus). We compared pre-and post-outbreak forest conditions and developed region-wide predictive maps of post-outbreak (1) live basal areas, (2) juvenile densities and (3) height
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.