Cancer staging is an essential clinical attribute informing patient prognosis and clinical trial eligibility. However, it is not routinely recorded in structured electronic health records. Here, we present a generalizable method for the automated classification of TNM stage directly from pathology report text. We train a BERT-based model using publicly available pathology reports across approximately 7,000 patients and 23 cancer types. We explore the use of different model types, with differing input sizes, parameters, and model architectures. Our final model goes beyond term-extraction, inferring TNM stage from context when it is not included in the report text explicitly. As external validation, we test our model on almost 8,000 pathology reports from Columbia University Medical Center, finding that our trained model achieved an AU-ROC of 0.815-0.942. This suggests that our model can be applied broadly to other institutions without additional institution-specific fine-tuning.
In cancer research, pathology report text is a largely un-tapped data source. Pathology reports are routinely generated, more nuanced than structured data, and contain added insight from pathologists. However, there are no publicly-available datasets for benchmarking report-based models. Two recent advances suggest the urgent need for a benchmark dataset. First, improved optical character recognition (OCR) techniques will make it possible to access older pathology reports in an automated way, increasing data available for analysis. Second, recent improvements in natural language processing (NLP) techniques using AI allow more accurate prediction of clinical targets from text. We apply state-of-the-art OCR and customized post-processing to publicly available report PDFs from The Cancer Genome Atlas, generating a machine-readable corpus of 9,523 reports. We perform a proof-of-principle cancer-type classification across 32 tissues, achieving 0.992 average AU-ROC. This dataset will be useful to researchers across specialties, including research clinicians, clinical trial investigators, and clinical NLP researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.