Amelogenin is the predominant protein found during enamel development and is thought to be the biomineralization protein controlling the unique elongated hydroxyapatite crystals that constitute enamel. The secondary structure of biomineralization proteins is thought to be important in the interaction with hydroxyapatite. Unfortunately, very little data are available on the structure or the orientation of amelogenin, either in solution or bound to hydroxyapatite. The C-terminus contains the majority of the charged residues and is predicted to interact with hydroxyapatite; thus, we used solid-state NMR dipolar recoupling techniques to investigate the structure and orientation of the C-terminus of LRAP, a naturally occurring splice variant of full-length amelogenin. Using (13)C{(15)N} Rotational Echo DOuble Resonance (REDOR), the structure of the C-terminus was found to be largely random coil, both on the surface of hydroxyapatite as well as lyophilized from solution. The orientation of the C-terminal region with respect to hydroxyapatite was investigated for two alanine residues (Ala(46) and Ala(49)) using (13)C{(31)P} REDOR and one lysine residue (Lys(52)) using (15)N{(31)P} REDOR. The residues examined were found to be 7.0, 5.7, and 5.8 A from the surface of hydroxyapatite for Ala(46), Ala(49), and Lys(52), respectively. This provides direct evidence that the charged C-terminus is interacting closely with hydroxyapatite, positioning the acidic amino acids to aid in controlling crystal growth. However, solid-state NMR dynamics measurements also revealed significant mobility in the C-terminal region of the protein, in both the side chains and the backbone, suggesting that this region alone is not responsible for binding.
The nucleation processes involved in calcium phosphate formation in tooth enamel are not well understood but are believed to involve proteins in the extracellular matrix. The ability of one enamel protein, amelogenin, to promote the nucleation and growth of calcium phosphate was studied in an in vitro system involving metastable supersaturated solutions. It was found that recombinant amelogenin (rM179 and rp(H)M180) promoted the nucleation of calcium phosphate compared to solutions without protein. The amount of calcium phosphate increased with increasing supersaturation of the solutions and increasing protein concentrations up to 6.5 μg/mL. At higher protein concentrations, the amount of calcium phosphate decreased. The kinetics of nucleation was studied in situ and in real time using a quartz crystal microbalance (QCM) and showed that the protein reduced the induction time for nucleation compared to solutions without protein. This work shows a nucleation role for amelogenin in vitro which may be promoted by the association of amelogenin into nanosphere templates, exposing charged functionality at the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.