Genome-wide expression and genotyping technologies have uncovered the genetic bases of complex diseases at unprecedented rates. However, despite its heavy burden and high prevalence, the molecular characterization of major depressive disorder (MDD) has lagged behind. Transcriptome studies report multiple brain disturbances but are limited by small sample sizes. Genome-wide association studies (GWAS) report weak results but suggest an overlapping genetic risk with other neuropsychiatric disorders. We performed a systematic molecular characterization of altered brain function in MDD using meta-analysis of differential expression of 8 gene array studies across 3 corticolimbic brain regions in 101 subjects. The identified ‘metaA-MDD' genes suggest altered neurotrophic support, brain plasticity and neuronal signaling in MDD. Notably, metaA-MDD genes display a low connectivity and hubness in coexpression networks as well as a uniform genomic distribution, which is consistent with diffuse polygenic mechanisms. We have integrated these findings with results from over 1,800 published GWAS and show that genetic variations nearby metaA-MDD genes predict a greater risk for neuropsychiatric disorders, and notably for age-related phenotypes, but not for other medical illnesses (including those frequently co-occurring with depression) or body characteristics. Collectively, the intersection of unbiased investigations of gene function (transcriptome) and structure (GWAS) provides novel leads to investigate molecular mechanisms of MDD and suggests common biological pathways between depression, other neuropsychiatric diseases and brain aging.
Post-traumatic stress disorder (PTSD) is more prevalent in women than men, yet much remains to be determined regarding the mechanism underlying this sex difference. Clinical and preclinical studies have shown that low estradiol levels during extinction of fear conditioning in rodents (i.e., cue exposure therapy in humans) leads to poor extinction consolidation and increased fear during extinction recall. The renin–angiotensin system (RAS) is also associated with stress-related pathologies, and RAS antagonists can enhance extinction consolidation in males. However, less is known about how estradiol and the RAS converge to alter fear extinction consolidation in females. Since estradiol downregulates the RAS, we determined the role of surgically (via ovariectomy [OVX]) and pharmacologically (via the hormonal contraceptive [HC], levonorgestrel) clamping estradiol at low levels in female rats on fear-related behavior, serum estradiol and angiotensin II (Ang II) levels, and angiotensin II type I receptor (AT1R) binding in the brain. We then tested whether the AT1R antagonist losartan would alter fear-related behavior in an estradiol-dependent manner. We found that both OVX and HC treatment produced extinction consolidation deficits relative to intact female rats in proestrus (when estradiol levels are high), and that losartan treatment mitigated these deficits and reduced freezing. OVX, but not HC, altered AT1R ligand binding, though HC reduced estradiol and increased Ang II levels in plasma. These findings have significant clinical implications, indicating that administration of an AT1R antagonist, especially if estradiol levels are low, prior to an exposure therapy session may improve treatment outcomes in females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.