Many studies have reported the aversive reactions of prey towards a predator's odour signals (e.g. urine marks), a behaviour widely thought to reduce the risk of predation by the predator. However, because odour signals persist in the environment, they are vulnerable to exploitation and eavesdropping by predators, prey and conspecifics. As such, scent patches created by one species might attract other species interested in information about their enemies. We studied this phenomenon by examining red fox investigation of odours from conspecifics and competing species in order to understand what prey are responding to when avoiding the odours of a predator. Surprisingly, foxes showed limited interest in conspecific odours but were highly interested in the odours of their competitors (wild dogs and feral cats), suggesting that odours are likely to play an important role in mediating competitive interactions. Importantly, our results identify that simple, dyadic interpretations of prey responses to a predator odour (i.e. cat odour ¼ risk of cat encounter ¼ fear of cats) can no longer be assumed in ecological or psychology research. Instead, interactions mediated by olfactory cues are more complex than previously thought and are likely to form a complicated olfactory web of interactions.
Prey naiveté is a failure to recognize novel predators and thought to cause exaggerated impacts of alien predators on native wildlife. Yet there is equivocal evidence in the literature for native prey naiveté towards aliens. To address this, we conducted a meta-analysis of Australian mammal responses to native and alien predators. Australia has the world's worst record of extinction and declines of native mammals, largely owing to two alien predators introduced more than 150 years ago: the feral cat, , and European red fox, Analysis of 94 responses to predator cues shows that Australian mammals consistently recognize alien foxes as a predation threat, possibly because of thousands of years of experience with another canid predator, the dingo, We also found recognition responses towards cats; however, in four of the seven studies available, these responses were of risk-taking behaviour rather than antipredator behaviour. Our results suggest that a simple failure to recognize alien predators is not behind the ongoing exaggerated impacts of alien predators in Australia. Instead, our results highlight an urgent need to better understand the appropriateness of antipredator responses in prey towards alien predators in order to understand native prey vulnerability.
Summary1. Olfactory predator search processes differ fundamentally to those based on vision, particularly when odour cues are deposited rather than airborne or emanating from a point source. When searching for visually cryptic prey that may have moved some distance from a deposited odour cue, cue context and spatial variability are the most likely sources of information about prey location available to an olfactory predator. 2. We tested whether the house mouse (Mus domesticus), a model olfactory predator, would use cue context and spatial variability when searching for buried food items; specifically, we tested the effect of varying cue patchiness, odour strength, and cue-prey association on mouse foraging success. 3. Within mouse-and predator-proof enclosures, we created grids of 100 sand-filled Petri dishes and buried peanut pieces in a set number of these patches to represent visually cryptic 'prey'. By adding peanut oil to selected dishes, we varied the spatial distribution of prey odour relative to the distribution of prey patches in each grid, to reflect different levels of cue patchiness (Experiment 1), odour strength (Experiment 2) and cue-prey association (Experiment 3). We measured the overnight foraging success of individual mice (percentage of searched patches containing prey), as well as their foraging activity (percentage of patches searched), and prey survival (percentage of unsearched prey patches). 4. Mouse foraging success was highest where odour cues were patchy rather than uniform (Experiment 1), and where cues were tightly associated with prey location, rather than randomly or uniformly distributed (Experiment 3). However, when cues at prey patches were ten times stronger than a uniformly distributed weak background odour, mice did not improve their foraging success over that experienced when cues were of uniform strength and distribution (Experiment 2). 5. These results suggest that spatial variability and cue context are important means by which olfactory predators can use deposited odour cues to locate visually cryptic prey. They also indicate that chemical crypsis can disrupt these search processes as effectively as background matching in visually based predator-prey systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.