Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (d 2 H and d 18 O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct-equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one-dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants.Abbreviations: BW, bulk soil water; LMWL, local meteoric water line; MAE, mean absolute error; MW, mobile soil water; OPD, one-pore domain; PET, potential evapotranspiration; TPD, two-pore domain with isotopic exchange via vapor exchange; TPD_noex, twopore domain without isotopic exchange via vapor exchange; TWW, two water world.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near‐surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood‐conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward‐projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near‐bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood‐conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.
Abstract. Plant–soil water isotopic dynamics in northern forests have been understudied relative to other forest types; nevertheless, such information can provide insight into how such forests may respond to hydroclimatic change. This study examines the co-evolution of xylem water and soil water stable isotopic compositions in a northern mixed forest in Ontario, Canada. Gross precipitation, bulk soil water and xylem water were sampled from pre-leaf out to post-senescence in 2016 for eastern white cedar, eastern hemlock, red oak and eastern white pine. Near-bole soil water contents and mobile soil water isotopic compositions were measured for the last three species. Mobile soil water did not deviate significantly from the local meteoric water line (LMWL). In contrast, near-surface bulk soil water showed significant evaporative enrichment relative to the LMWL from pre-leaf out to peak leaf out under all tree canopies, while xylem water was significantly depleted in 18O and particularly 2H relative to bulk soil water throughout the growing season. Inter-species differences in deviation of xylem water from the LMWL and their temporal changes emerged during the growing season, with coniferous species xylem water becoming isotopically enriched, while that of red oak became more depleted in 2H and 18O. These divergences occurred despite thin soil cover (generally <0.5 m depth to bedrock) which would constrain inter-species differences in tree rooting depths in this landscape. Isotopic fractionation at the tree root and fractionation of xylem water via evaporation through the tree bark are among the most plausible potential explanations for deviations between xylem and soil water isotopic compositions. Differences in the timing and intensity of water use between deciduous and coniferous trees may account for inter-specific variations in xylem water isotopic composition and its temporal evolution during the growing season in this northern forest landscape.
Abstract. In recent years, much attention has been paid to the issue of ecohydrological separation during water uptake by vegetation. This has been spurred in part by the two water worlds hypothesis, whereby mobile blue water contributes to groundwater recharge and streamflow generation whereas less mobile green water held in the soil is taken up and transpired by vegetation. This study examines the potential for ecohydrological separation in a northern mixed forest in Ontario, Canada. Stable isotopic compositions of gross precipitation, bulk soil water and xylem water were measured throughout the 2016 growing season for four species: eastern white cedar, eastern hemlock, red oak and eastern white pine. Near-bole soil water contents and mobile soil water isotopic compositions were measured for the last three species. Mobile soil water did not deviate significantly from the local meteoric water line (LMWL); in contrast, both bulk soil water and xylem water deviated significantly from the LMWL, with xylem water significantly depleted in 18O and particularly 2H relative to bulk soil water. Near-surface bulk soil water experienced evaporative enrichment from pre-leaf out to peak leaf out under all tree canopies. There were inter-species differences in displacement of xylem water isotopic compositions from the LMWL and their temporal changes during the growing season, with those of coniferous species becoming isotopically enriched while those of red oak became more depleted in 2H and 18O. These divergences occurred despite thin soil cover (generally
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.