We present deep color-magnitude diagrams for three rich intermediate-age star clusters in the LMC, constructed from archival ACS F435W and F814W imaging. All three clusters exhibit clear evidence for peculiar main-sequence turn-offs. NGC 1846 and 1806 each possess two distinct turn-off branches, while the turn-off for NGC 1783 shows a much larger spread in color than can be explained by the photometric uncertainties. We demonstrate that although all three clusters contain significant populations of unresolved binary stars, these cannot be the underlying cause of the observed turn-off morphologies. The simplest explanation is that each cluster is composed of at least two different stellar populations with very similar metal abundances but ages separated by up to ∼ 300 Myr. The origin of these unusual properties remains unidentified; however, the fact that at least three massive clusters containing multiple stellar populations are now known in the LMC suggests a potentially significant formation channel.
We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were discovered during the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 subgroup conducted with the MegaPrime/MegaCam wide-field camera on the Canada-France-Hawaii Telescope. The current PAndAS survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of ∼ 150 kpc. Here we present for the first time the metal-poor stellar density map for this whole region, not only as an illustration of the discovery space for satellite galaxies, but also as a birds-eye view of the ongoing assembly process of an L * disk galaxy.Four of the newly discovered satellites appear as well-defined spatial over-densities of stars lying on the expected locus of metal-poor (−2.5 < [Fe/H] < −1.3) red giant branch stars at the distance of M31. The fifth over-density, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. Based on distance estimates from horizontal branch magnitudes, all five have metallicities typical of dwarf spheroidal galaxies ranging from [Fe/H] = −1.7 ± 0.2 to [Fe/H] = −1.9 ± 0.2 and absolute magnitudes ranging from M V = −7.1 ± 0.5 to M V = −10.2 ± 0.5. These five additional satellites bring the number of dwarf spheroidal galaxies in this region to twenty five and continue the trend whereby the brighter dwarf spheroidal satellites of M31 generally have much larger half-light radii than their Milky Way counterparts.With an extended sample of M31 satellite galaxies we also revisit the spatial distribution of this population and in particular we find that, within the current projected limits of the PAndAS survey the surface density of satellites is essentially constant out to 150 kpc. This corresponds to a radial density distribution of satellites varying as r −1 a result seemingly in conflict with the predictions of cosmological simulations.
The authors prospectively used a new hand-held point-and-shoot pupillometer to assess pupillary function quantitatively. Repetitive measurements were initially made in more than 300 healthy volunteers ranging in age from 1 to 87 years, providing a total of 2,432 paired (alternative right eye, left eye) measurements under varying light conditions. The authors studied 17 patients undergoing a variety of nonintracranial, nonophthalmological, endoscopic, or surgical procedures and 20 seniors in a cardiology clinic to learn more about the effects of a variety of drugs. Additionally, the authors carried out detailed studies in 26 adults with acute severe head injury in whom intracranial pressure (ICP) was continuously monitored. Finally, five patients suffering from subarachnoid hemorrhage were also studied. Quantitative pupillary measurements could be reliably replicated in the study participants. In healthy volunteers the resting pupillary aperture averaged 4.1 mm and the minimal aperture after stimulation was 2.7 mm, resulting in a 34% change in pupil size. Constriction velocity averaged 1.48 +/- 0.33 mm/second. Pupillary symmetry was striking in both healthy volunteers and patients without intracranial or uncorrected visual acuity disorders. In the 2,432 paired measurements in healthy volunteers, constriction velocity was noted to fall below 0.85 mm/second on only 33 occasions and below 0.6 mm/second on eight occasions (< one in 310 observations). In outpatients, the reduction in constriction velocity was observed when either oral or intravenous narcotic agents and diazepam analogs were administered. These effects were transient and always symmetrical. Among the 26 patients with head injuries, eight were found to have elevations of ICP above 20 mm Hg and pupillary dynamics in each of these patients remained normal. In 13 patients with a midline shift greater than 3 mm, elevations of ICP above 20 mm Hg, when present for 15 minutes, were frequently associated with a reduction in constriction velocity on the side of the mass effect to below 0.6 mm/second (51% of 156 paired observations). In five patients with diffuse brain swelling but no midline shift, a reduction in constriction velocities did not generally occur until the ICP exceeded 30 mm Hg. Changes in the percentage of reduction from the resting state following stimulation were always greater than 10%, even in patients receiving large doses of morphine and propofol in whom the ICP was lower than 20 mm Hg. Asymmetry of pupillary size greater than 0.5 mm was observed infrequently (< 1%) in healthy volunteers and was rarely seen in head-injured patients unless the ICP exceeded 20 mm Hg. Pupillometry is a reliable technology capable of providing repetitive data on quantitative pupillary function in states of health and disease.
While wide-field surveys of M31 have revealed much substructure at large radii, understanding the nature and origin of this material is not straightforward from morphology alone. Using deep HST/ACS data, we have derived further constraints in the form of quantitative star formation histories (SFHs) for 14 inner halo fields which sample diverse substructures. In agreement with our previous analysis of colour-magnitude diagram morphologies, we find the resultant behaviours can be broadly separated into two categories. The SFHs of 'disc-like' fields indicate that most of their mass has formed since z ∼ 1, with one quarter of the mass formed in the last 5 Gyr. We find 'stream-like' fields to be on average 1.5 Gyr older, with 10 percent of their stellar mass formed within the last 5 Gyr. These fields are also characterised by an age-metallicity relation showing rapid chemical enrichment to solar metallicity by z = 1, suggestive of an early-type progenitor. We confirm a significant burst of star formation 2 Gyr ago, discovered in our previous work, in all the fields studied here. The presence of these young stars in our most remote fields suggests that they have not formed in situ but have been kicked-out from the thin disc through disc heating in the recent past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.