Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal model for studying the pathogenesis and innate immune responses to C. jejuni.
Clear cell ovarian cancer histotypes exhibit metabolic features associated with resistance to hypoxia and glucose deprivation-induced cell death. This metabolic characteristic suggests that clear cell ovarian cancers activate survival mechanisms not typical of other epithelial ovarian cancers. Here we demonstrate that microtubule-associated protein 1 light chain 3A (LC3A), a marker of autophagy, is related to hypoxia and poor prognosis in clear cell ovarian cancer. In 485 ovarian tumours, we found that LC3A was significantly associated with poor progression-free (p = 0.0232), disease-specific (p = 0.0011) and overall patient survival (p = 0.0013) in clear cell ovarian cancer patients, but not in other subtypes examined. LC3A was an independent prognostic marker of reduced disease-specific [hazard ratio (HR): 2.55 (95% CI 1.21-5.37); p = 0.014] and overall survival [HR: 1.95 (95% CI 1.00-3.77); p = 0.049] in patients with clear cell ovarian carcinoma. We also found a strong link between autophagy and hypoxia as LC3A staining revealed a significant positive association with the hypoxia-related proteins carbonic anhydrase-IX and HIF-1α. The functional link between hypoxia and autophagy was demonstrated using clear cell and high-grade serous cell lines that were subjected to hypoxia or hypoxia + glucose deprivation. Clear cell carcinoma lines displayed greater autophagy induction and were subsequently more sensitive to inhibition of autophagy under hypoxia compared to the high-grade serous lines. Together, our findings indicate that hypoxia-induced autophagy may be crucial to the clinical pathology of clear cell ovarian cancer and is a potential explanation for histological subtype differences in patient disease progression and outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.