The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Over the last several years significant progress has been made in this field, which we will try to summarize. These studies emphasize the role of osteocytes as the professional mechanosensory cells of bone, and the lacuno-canalicular porosity as the structure that mediates mechanosensing. Strain-derived flow of interstitial fluid through this porosity seems to mechanically activate the osteocytes, as well as ensuring transport of cell signaling molecules and nutrients and waste products. This concept allows an explanation of local bone gain and loss, as well as remodeling in response to fatigue damage, as processes supervised by mechanosensitive osteocytes.
It has been known for more than a century that bone tissue adapts to functional stress by changes in structure and mass. However, the mechanism by which stress is translated into cellular activities of bone formation and resorption is unknown. We studied the response of isolated osteocytes derived from embryonic chicken calvariae to intermittent hydrostatic compression as well as pulsating fluid flow, and compared their response to osteoblasts and periosteal fibroblasts. Osteocytes, but not osteoblasts or periosteal fibroblasts, reacted to 1 h pulsating fluid flow with a sustained release of prostaglandin E2. Intermittent hydrostatic compression stimulated prostaglandin production to a lesser extent: after 6 and 24 h in osteocytes and after 6 h in osteoblasts. These data provide evidence that osteocytes are the most mechanosensitive cells in bone involved in the transduction of mechanical stress into a biological response. The results support the hypothesis that stress on bone causes fluid flow in the lacunar-canalicular system, which stimulates the osteocytes to produce factors that regulate bone metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.